ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.06503
  4. Cited By
PRI-VAE: Principle-of-Relevant-Information Variational Autoencoders

PRI-VAE: Principle-of-Relevant-Information Variational Autoencoders

13 July 2020
Yanjun Li
Shujian Yu
José C. Príncipe
Xiaolin Li
D. Wu
    DRL
ArXivPDFHTML

Papers citing "PRI-VAE: Principle-of-Relevant-Information Variational Autoencoders"

3 / 3 papers shown
Title
Information-Theoretic Hashing for Zero-Shot Cross-Modal Retrieval
Information-Theoretic Hashing for Zero-Shot Cross-Modal Retrieval
Yufeng Shi
Shujian Yu
Duanquan Xu
Xinge You
26
1
0
26 Sep 2022
Principle of Relevant Information for Graph Sparsification
Principle of Relevant Information for Graph Sparsification
Shujian Yu
Francesco Alesiani
Wenzhe Yin
Robert Jenssen
José C. Príncipe
13
10
0
31 May 2022
Understanding Autoencoders with Information Theoretic Concepts
Understanding Autoencoders with Information Theoretic Concepts
Shujian Yu
José C. Príncipe
AI4CE
49
132
0
30 Mar 2018
1