ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.06669
  4. Cited By
Reinforcement Learning of Musculoskeletal Control from Functional
  Simulations

Reinforcement Learning of Musculoskeletal Control from Functional Simulations

13 July 2020
Emanuel Joos
Fabien Péan
Orçun Göksel
    AI4CE
ArXivPDFHTML

Papers citing "Reinforcement Learning of Musculoskeletal Control from Functional Simulations"

4 / 4 papers shown
Title
DEP-RL: Embodied Exploration for Reinforcement Learning in Overactuated
  and Musculoskeletal Systems
DEP-RL: Embodied Exploration for Reinforcement Learning in Overactuated and Musculoskeletal Systems
Pierre Schumacher
D. Haeufle
Dieter Buchler
S. Schmitt
Georg Martius
15
31
0
30 May 2022
Is Bang-Bang Control All You Need? Solving Continuous Control with
  Bernoulli Policies
Is Bang-Bang Control All You Need? Solving Continuous Control with Bernoulli Policies
Tim Seyde
Igor Gilitschenski
Wilko Schwarting
Bartolomeo Stellato
Martin Riedmiller
Markus Wulfmeier
Daniela Rus
8
44
0
03 Nov 2021
Learning to Run challenge: Synthesizing physiologically accurate motion
  using deep reinforcement learning
Learning to Run challenge: Synthesizing physiologically accurate motion using deep reinforcement learning
L. Kidzinski
Sharada Mohanty
Carmichael F. Ong
Jennifer Hicks
Sean F. Carroll
Sergey Levine
M. Salathé
Scott L. Delp
19
60
0
31 Mar 2018
Emergence of Locomotion Behaviours in Rich Environments
Emergence of Locomotion Behaviours in Rich Environments
N. Heess
TB Dhruva
S. Sriram
Jay Lemmon
J. Merel
...
Tom Erez
Ziyun Wang
S. M. Ali Eslami
Martin Riedmiller
David Silver
131
928
0
07 Jul 2017
1