ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.06731
  4. Cited By
Regularized linear autoencoders recover the principal components,
  eventually

Regularized linear autoencoders recover the principal components, eventually

13 July 2020
Xuchan Bao
James Lucas
Sushant Sachdeva
Roger C. Grosse
ArXivPDFHTML

Papers citing "Regularized linear autoencoders recover the principal components, eventually"

3 / 3 papers shown
Title
Good Things Come in Pairs: Paired Autoencoders for Inverse Problems
Good Things Come in Pairs: Paired Autoencoders for Inverse Problems
Matthias Chung
B. Peters
Michael Solomon
34
0
0
10 May 2025
Improved Representation Learning Through Tensorized Autoencoders
Improved Representation Learning Through Tensorized Autoencoders
P. Esser
Satyaki Mukherjee
Mahalakshmi Sabanayagam
D. Ghoshdastidar
SSL
GNN
OOD
DRL
36
0
0
02 Dec 2022
Spectral Inference Networks: Unifying Deep and Spectral Learning
Spectral Inference Networks: Unifying Deep and Spectral Learning
David Pfau
Stig Petersen
Ashish Agarwal
David Barrett
Kimberly L. Stachenfeld
51
40
0
06 Jun 2018
1