Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.08663
Cited By
TUDataset: A collection of benchmark datasets for learning with graphs
16 July 2020
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
Re-assign community
ArXiv
PDF
HTML
Papers citing
"TUDataset: A collection of benchmark datasets for learning with graphs"
19 / 119 papers shown
Title
Prototypical Graph Contrastive Learning
Shuai Lin
Pan Zhou
Zi-Yuan Hu
Shuojia Wang
Ruihui Zhao
Yefeng Zheng
Liang Lin
Eric P. Xing
Xiaodan Liang
16
86
0
17 Jun 2021
Learning to Pool in Graph Neural Networks for Extrapolation
Jihoon Ko
Taehyung Kwon
Kijung Shin
Juho Lee
16
6
0
11 Jun 2021
Graph Contrastive Learning Automated
Yuning You
Tianlong Chen
Yang Shen
Zhangyang Wang
16
447
0
10 Jun 2021
Breaking the Limits of Message Passing Graph Neural Networks
M. Balcilar
Pierre Héroux
Benoit Gaüzère
Pascal Vasseur
Sébastien Adam
P. Honeine
13
121
0
08 Jun 2021
Explainability-based Backdoor Attacks Against Graph Neural Networks
Jing Xu
Minhui Xue
Xue
S. Picek
20
74
0
08 Apr 2021
Size-Invariant Graph Representations for Graph Classification Extrapolations
Beatrice Bevilacqua
Yangze Zhou
Bruno Ribeiro
OOD
31
108
0
08 Mar 2021
Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks
Cristian Bodnar
Fabrizio Frasca
Yu Guang Wang
N. Otter
Guido Montúfar
Pietro Lió
M. Bronstein
25
247
0
04 Mar 2021
Topological Graph Neural Networks
Max Horn
E. Brouwer
Michael Moor
Yves Moreau
Bastian Alexander Rieck
Karsten M. Borgwardt
AI4CE
25
90
0
15 Feb 2021
On Using Classification Datasets to Evaluate Graph-Level Outlier Detection: Peculiar Observations and New Insights
Lingxiao Zhao
L. Akoglu
25
65
0
23 Dec 2020
Learning Graphons via Structured Gromov-Wasserstein Barycenters
Hongteng Xu
Dixin Luo
Lawrence Carin
H. Zha
44
28
0
10 Dec 2020
LCS Graph Kernel Based on Wasserstein Distance in Longest Common Subsequence Metric Space
Jianming Huang
Zhongxi Fang
Hiroyuki Kasai
13
19
0
07 Dec 2020
Graph Kernels: State-of-the-Art and Future Challenges
Karsten M. Borgwardt
Elisabetta Ghisu
Felipe Llinares-López
Leslie O’Bray
Bastian Alexander Rieck
AI4TS
18
100
0
07 Nov 2020
From Local Structures to Size Generalization in Graph Neural Networks
Gilad Yehudai
Ethan Fetaya
E. Meirom
Gal Chechik
Haggai Maron
GNN
AI4CE
157
123
0
17 Oct 2020
Contrastive Learning with Hard Negative Samples
Joshua Robinson
Ching-Yao Chuang
S. Sra
Stefanie Jegelka
SSL
14
759
0
09 Oct 2020
A Survey of Privacy Attacks in Machine Learning
M. Rigaki
Sebastian Garcia
PILM
AAML
25
213
0
15 Jul 2020
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks
Minjie Wang
Da Zheng
Zihao Ye
Quan Gan
Mufei Li
...
J. Zhao
Haotong Zhang
Alex Smola
Jinyang Li
Zheng-Wei Zhang
AI4CE
GNN
189
744
0
03 Sep 2019
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
229
1,941
0
09 Jun 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
219
1,332
0
12 Feb 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,811
0
25 Nov 2016
Previous
1
2
3