ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.08663
  4. Cited By
TUDataset: A collection of benchmark datasets for learning with graphs

TUDataset: A collection of benchmark datasets for learning with graphs

16 July 2020
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
ArXivPDFHTML

Papers citing "TUDataset: A collection of benchmark datasets for learning with graphs"

19 / 119 papers shown
Title
Prototypical Graph Contrastive Learning
Prototypical Graph Contrastive Learning
Shuai Lin
Pan Zhou
Zi-Yuan Hu
Shuojia Wang
Ruihui Zhao
Yefeng Zheng
Liang Lin
Eric P. Xing
Xiaodan Liang
16
86
0
17 Jun 2021
Learning to Pool in Graph Neural Networks for Extrapolation
Learning to Pool in Graph Neural Networks for Extrapolation
Jihoon Ko
Taehyung Kwon
Kijung Shin
Juho Lee
16
6
0
11 Jun 2021
Graph Contrastive Learning Automated
Graph Contrastive Learning Automated
Yuning You
Tianlong Chen
Yang Shen
Zhangyang Wang
16
447
0
10 Jun 2021
Breaking the Limits of Message Passing Graph Neural Networks
Breaking the Limits of Message Passing Graph Neural Networks
M. Balcilar
Pierre Héroux
Benoit Gaüzère
Pascal Vasseur
Sébastien Adam
P. Honeine
13
121
0
08 Jun 2021
Explainability-based Backdoor Attacks Against Graph Neural Networks
Explainability-based Backdoor Attacks Against Graph Neural Networks
Jing Xu
Minhui Xue
Xue
S. Picek
20
74
0
08 Apr 2021
Size-Invariant Graph Representations for Graph Classification
  Extrapolations
Size-Invariant Graph Representations for Graph Classification Extrapolations
Beatrice Bevilacqua
Yangze Zhou
Bruno Ribeiro
OOD
31
108
0
08 Mar 2021
Weisfeiler and Lehman Go Topological: Message Passing Simplicial
  Networks
Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks
Cristian Bodnar
Fabrizio Frasca
Yu Guang Wang
N. Otter
Guido Montúfar
Pietro Lió
M. Bronstein
25
247
0
04 Mar 2021
Topological Graph Neural Networks
Topological Graph Neural Networks
Max Horn
E. Brouwer
Michael Moor
Yves Moreau
Bastian Alexander Rieck
Karsten M. Borgwardt
AI4CE
25
90
0
15 Feb 2021
On Using Classification Datasets to Evaluate Graph-Level Outlier
  Detection: Peculiar Observations and New Insights
On Using Classification Datasets to Evaluate Graph-Level Outlier Detection: Peculiar Observations and New Insights
Lingxiao Zhao
L. Akoglu
25
65
0
23 Dec 2020
Learning Graphons via Structured Gromov-Wasserstein Barycenters
Learning Graphons via Structured Gromov-Wasserstein Barycenters
Hongteng Xu
Dixin Luo
Lawrence Carin
H. Zha
44
28
0
10 Dec 2020
LCS Graph Kernel Based on Wasserstein Distance in Longest Common
  Subsequence Metric Space
LCS Graph Kernel Based on Wasserstein Distance in Longest Common Subsequence Metric Space
Jianming Huang
Zhongxi Fang
Hiroyuki Kasai
13
19
0
07 Dec 2020
Graph Kernels: State-of-the-Art and Future Challenges
Graph Kernels: State-of-the-Art and Future Challenges
Karsten M. Borgwardt
Elisabetta Ghisu
Felipe Llinares-López
Leslie O’Bray
Bastian Alexander Rieck
AI4TS
18
100
0
07 Nov 2020
From Local Structures to Size Generalization in Graph Neural Networks
From Local Structures to Size Generalization in Graph Neural Networks
Gilad Yehudai
Ethan Fetaya
E. Meirom
Gal Chechik
Haggai Maron
GNN
AI4CE
157
123
0
17 Oct 2020
Contrastive Learning with Hard Negative Samples
Contrastive Learning with Hard Negative Samples
Joshua Robinson
Ching-Yao Chuang
S. Sra
Stefanie Jegelka
SSL
14
759
0
09 Oct 2020
A Survey of Privacy Attacks in Machine Learning
A Survey of Privacy Attacks in Machine Learning
M. Rigaki
Sebastian Garcia
PILM
AAML
25
213
0
15 Jul 2020
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph
  Neural Networks
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks
Minjie Wang
Da Zheng
Zihao Ye
Quan Gan
Mufei Li
...
J. Zhao
Haotong Zhang
Alex Smola
Jinyang Li
Zheng-Wei Zhang
AI4CE
GNN
189
744
0
03 Sep 2019
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
229
1,941
0
09 Jun 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
219
1,332
0
12 Feb 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,811
0
25 Nov 2016
Previous
123