Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.08902
Cited By
v1
v2
v3
v4 (latest)
Attraction-Repulsion Spectrum in Neighbor Embeddings
17 July 2020
Jan Niklas Böhm
Philipp Berens
D. Kobak
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Attraction-Repulsion Spectrum in Neighbor Embeddings"
26 / 26 papers shown
Title
Node Embeddings via Neighbor Embeddings
Jan Niklas Böhm
Marius Keute
Alica Guzmán
Sebastian Damrich
Andrew Draganov
D. Kobak
GNN
109
0
0
31 Mar 2025
The Shape of Attraction in UMAP: Exploring the Embedding Forces in Dimensionality Reduction
Mohammad Tariqul Islam
Jason W. Fleischer
447
0
0
12 Mar 2025
Navigating the Effect of Parametrization for Dimensionality Reduction
Haiyang Huang
Yingfan Wang
Cynthia Rudin
98
1
0
24 Nov 2024
Large data limits and scaling laws for tSNE
Ryan Murray
Adam Pickarski
46
3
0
16 Oct 2024
FedNE: Surrogate-Assisted Federated Neighbor Embedding for Dimensionality Reduction
Ziwei Li
Xiaoqi Wang
Hong-You Chen
Han-Wei Shen
Wei-Lun Chao
FedML
139
1
0
17 Sep 2024
Outlier Detection in Large Radiological Datasets using UMAP
Mohammad Tariqul Islam
Jason W. Fleischer
92
2
0
31 Jul 2024
Sailing in high-dimensional spaces: Low-dimensional embeddings through angle preservation
Jonas Fischer
Rong Ma
84
0
0
14 Jun 2024
Bypassing Skip-Gram Negative Sampling: Dimension Regularization as a More Efficient Alternative for Graph Embeddings
David Liu
Arjun Seshadri
Tina Eliassi-Rad
J. Ugander
50
1
0
30 Apr 2024
Graph Vertex Embeddings: Distance, Regularization and Community Detection
Radoslaw Nowak
Adam Malkowski
Daniel Cie'slak
Piotr Sokól
Pawel Wawrzyñski
49
0
0
09 Apr 2024
Curvature Augmented Manifold Embedding and Learning
Yongming Liu
MedIm
217
2
0
21 Mar 2024
Convergence analysis of t-SNE as a gradient flow for point cloud on a manifold
Seonghyeon Jeong
Hau-tieng Wu
54
3
0
31 Jan 2024
Accelerating hyperbolic t-SNE
Martin Skrodzki
Hunter van Geffen
Nicolas F. Chaves-de-Plaza
T. Höllt
E. Eisemann
Klaus Hildebrandt
80
4
0
23 Jan 2024
Manifold learning: what, how, and why
M. Meilă
Hanyu Zhang
88
59
0
07 Nov 2023
Persistent Homology for High-dimensional Data Based on Spectral Methods
Sebastian Damrich
Philipp Berens
D. Kobak
57
2
0
06 Nov 2023
Supervised Stochastic Neighbor Embedding Using Contrastive Learning
Yi Zhang
SSL
38
0
0
15 Sep 2023
Class-constrained t-SNE: Combining Data Features and Class Probabilities
Linhao Meng
S. V. D. Elzen
Nicola Pezzotti
Anna Vilanova
71
17
0
26 Aug 2023
Relating tSNE and UMAP to Classical Dimensionality Reduction
Andrew Draganov
Simon Dohn
FAtt
91
4
0
20 Jun 2023
Efficient and Robust Bayesian Selection of Hyperparameters in Dimension Reduction for Visualization
Yin-Ting Liao
Hengrui Luo
A. Ma
57
3
0
01 Jun 2023
A Heat Diffusion Perspective on Geodesic Preserving Dimensionality Reduction
G. Huguet
Alexander Tong
E. Brouwer
Yanlei Zhang
Guy Wolf
Ian M. Adelstein
Smita Krishnaswamy
DiffM
85
7
0
30 May 2023
Collection Space Navigator: An Interactive Visualization Interface for Multidimensional Datasets
Tillmann Ohm
M. Sola
Andres Karjus
Maximilian Schich
50
6
0
11 May 2023
Interpretable Dimensionality Reduction by Feature Preserving Manifold Approximation and Projection
Yang Yang
Hongjian Sun
Jialei Gong
Di Yu
FAtt
58
2
0
17 Nov 2022
Unsupervised visualization of image datasets using contrastive learning
Jan Boehm
Philipp Berens
D. Kobak
SSL
124
17
0
18 Oct 2022
ParaDime: A Framework for Parametric Dimensionality Reduction
A. Hinterreiter
Christina Humer
Bernhard Kainz
M. Streit
51
6
0
10 Oct 2022
On the Selection of Tuning Parameters for Patch-Stitching Embedding Methods
E. Arias-Castro
Phong Alain Chau
42
0
0
14 Jul 2022
From
t
t
t
-SNE to UMAP with contrastive learning
Sebastian Damrich
Jan Niklas Böhm
Fred Hamprecht
D. Kobak
SSL
98
23
0
03 Jun 2022
Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder
Q. Garrido
Sebastian Damrich
Alexander Jäger
Dario Cerletti
Manfred Claassen
Laurent Najman
Fred Hamprecht
48
5
0
11 Feb 2021
1