ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.08902
  4. Cited By
Attraction-Repulsion Spectrum in Neighbor Embeddings
v1v2v3v4 (latest)

Attraction-Repulsion Spectrum in Neighbor Embeddings

17 July 2020
Jan Niklas Böhm
Philipp Berens
D. Kobak
ArXiv (abs)PDFHTML

Papers citing "Attraction-Repulsion Spectrum in Neighbor Embeddings"

26 / 26 papers shown
Title
Node Embeddings via Neighbor Embeddings
Node Embeddings via Neighbor Embeddings
Jan Niklas Böhm
Marius Keute
Alica Guzmán
Sebastian Damrich
Andrew Draganov
D. Kobak
GNN
109
0
0
31 Mar 2025
The Shape of Attraction in UMAP: Exploring the Embedding Forces in Dimensionality Reduction
The Shape of Attraction in UMAP: Exploring the Embedding Forces in Dimensionality Reduction
Mohammad Tariqul Islam
Jason W. Fleischer
447
0
0
12 Mar 2025
Navigating the Effect of Parametrization for Dimensionality Reduction
Navigating the Effect of Parametrization for Dimensionality Reduction
Haiyang Huang
Yingfan Wang
Cynthia Rudin
98
1
0
24 Nov 2024
Large data limits and scaling laws for tSNE
Large data limits and scaling laws for tSNE
Ryan Murray
Adam Pickarski
46
3
0
16 Oct 2024
FedNE: Surrogate-Assisted Federated Neighbor Embedding for
  Dimensionality Reduction
FedNE: Surrogate-Assisted Federated Neighbor Embedding for Dimensionality Reduction
Ziwei Li
Xiaoqi Wang
Hong-You Chen
Han-Wei Shen
Wei-Lun Chao
FedML
139
1
0
17 Sep 2024
Outlier Detection in Large Radiological Datasets using UMAP
Outlier Detection in Large Radiological Datasets using UMAP
Mohammad Tariqul Islam
Jason W. Fleischer
92
2
0
31 Jul 2024
Sailing in high-dimensional spaces: Low-dimensional embeddings through
  angle preservation
Sailing in high-dimensional spaces: Low-dimensional embeddings through angle preservation
Jonas Fischer
Rong Ma
84
0
0
14 Jun 2024
Bypassing Skip-Gram Negative Sampling: Dimension Regularization as a More Efficient Alternative for Graph Embeddings
Bypassing Skip-Gram Negative Sampling: Dimension Regularization as a More Efficient Alternative for Graph Embeddings
David Liu
Arjun Seshadri
Tina Eliassi-Rad
J. Ugander
50
1
0
30 Apr 2024
Graph Vertex Embeddings: Distance, Regularization and Community
  Detection
Graph Vertex Embeddings: Distance, Regularization and Community Detection
Radoslaw Nowak
Adam Malkowski
Daniel Cie'slak
Piotr Sokól
Pawel Wawrzyñski
49
0
0
09 Apr 2024
Curvature Augmented Manifold Embedding and Learning
Curvature Augmented Manifold Embedding and Learning
Yongming Liu
MedIm
217
2
0
21 Mar 2024
Convergence analysis of t-SNE as a gradient flow for point cloud on a
  manifold
Convergence analysis of t-SNE as a gradient flow for point cloud on a manifold
Seonghyeon Jeong
Hau-tieng Wu
54
3
0
31 Jan 2024
Accelerating hyperbolic t-SNE
Accelerating hyperbolic t-SNE
Martin Skrodzki
Hunter van Geffen
Nicolas F. Chaves-de-Plaza
T. Höllt
E. Eisemann
Klaus Hildebrandt
80
4
0
23 Jan 2024
Manifold learning: what, how, and why
Manifold learning: what, how, and why
M. Meilă
Hanyu Zhang
88
59
0
07 Nov 2023
Persistent Homology for High-dimensional Data Based on Spectral Methods
Persistent Homology for High-dimensional Data Based on Spectral Methods
Sebastian Damrich
Philipp Berens
D. Kobak
57
2
0
06 Nov 2023
Supervised Stochastic Neighbor Embedding Using Contrastive Learning
Supervised Stochastic Neighbor Embedding Using Contrastive Learning
Yi Zhang
SSL
38
0
0
15 Sep 2023
Class-constrained t-SNE: Combining Data Features and Class Probabilities
Class-constrained t-SNE: Combining Data Features and Class Probabilities
Linhao Meng
S. V. D. Elzen
Nicola Pezzotti
Anna Vilanova
71
17
0
26 Aug 2023
Relating tSNE and UMAP to Classical Dimensionality Reduction
Relating tSNE and UMAP to Classical Dimensionality Reduction
Andrew Draganov
Simon Dohn
FAtt
91
4
0
20 Jun 2023
Efficient and Robust Bayesian Selection of Hyperparameters in Dimension
  Reduction for Visualization
Efficient and Robust Bayesian Selection of Hyperparameters in Dimension Reduction for Visualization
Yin-Ting Liao
Hengrui Luo
A. Ma
57
3
0
01 Jun 2023
A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
  Reduction
A Heat Diffusion Perspective on Geodesic Preserving Dimensionality Reduction
G. Huguet
Alexander Tong
E. Brouwer
Yanlei Zhang
Guy Wolf
Ian M. Adelstein
Smita Krishnaswamy
DiffM
85
7
0
30 May 2023
Collection Space Navigator: An Interactive Visualization Interface for
  Multidimensional Datasets
Collection Space Navigator: An Interactive Visualization Interface for Multidimensional Datasets
Tillmann Ohm
M. Sola
Andres Karjus
Maximilian Schich
50
6
0
11 May 2023
Interpretable Dimensionality Reduction by Feature Preserving Manifold
  Approximation and Projection
Interpretable Dimensionality Reduction by Feature Preserving Manifold Approximation and Projection
Yang Yang
Hongjian Sun
Jialei Gong
Di Yu
FAtt
58
2
0
17 Nov 2022
Unsupervised visualization of image datasets using contrastive learning
Unsupervised visualization of image datasets using contrastive learning
Jan Boehm
Philipp Berens
D. Kobak
SSL
124
17
0
18 Oct 2022
ParaDime: A Framework for Parametric Dimensionality Reduction
ParaDime: A Framework for Parametric Dimensionality Reduction
A. Hinterreiter
Christina Humer
Bernhard Kainz
M. Streit
51
6
0
10 Oct 2022
On the Selection of Tuning Parameters for Patch-Stitching Embedding
  Methods
On the Selection of Tuning Parameters for Patch-Stitching Embedding Methods
E. Arias-Castro
Phong Alain Chau
42
0
0
14 Jul 2022
From $t$-SNE to UMAP with contrastive learning
From ttt-SNE to UMAP with contrastive learning
Sebastian Damrich
Jan Niklas Böhm
Fred Hamprecht
D. Kobak
SSL
98
23
0
03 Jun 2022
Visualizing hierarchies in scRNA-seq data using a density tree-biased
  autoencoder
Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder
Q. Garrido
Sebastian Damrich
Alexander Jäger
Dario Cerletti
Manfred Claassen
Laurent Najman
Fred Hamprecht
48
5
0
11 Feb 2021
1