ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.08952
  4. Cited By
Always-On 674uW @ 4GOP/s Error Resilient Binary Neural Networks with
  Aggressive SRAM Voltage Scaling on a 22nm IoT End-Node

Always-On 674uW @ 4GOP/s Error Resilient Binary Neural Networks with Aggressive SRAM Voltage Scaling on a 22nm IoT End-Node

17 July 2020
Alfio Di Mauro
Francesco Conti
Pasquale Davide Schiavone
D. Rossi
Luca Benini
ArXivPDFHTML

Papers citing "Always-On 674uW @ 4GOP/s Error Resilient Binary Neural Networks with Aggressive SRAM Voltage Scaling on a 22nm IoT End-Node"

2 / 2 papers shown
Title
Vau da muntanialas: Energy-efficient multi-die scalable acceleration of
  RNN inference
Vau da muntanialas: Energy-efficient multi-die scalable acceleration of RNN inference
G. Paulin
Francesco Conti
Lukas Cavigelli
Luca Benini
22
8
0
14 Feb 2022
A 64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones
A 64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones
Daniele Palossi
Antonio Loquercio
Francesco Conti
Eric Flamand
Davide Scaramuzza
Luca Benini
166
158
0
04 May 2018
1