Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.09527
Cited By
Abstraction based Output Range Analysis for Neural Networks
18 July 2020
P. Prabhakar
Zahra Rahimi Afzal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Abstraction based Output Range Analysis for Neural Networks"
15 / 15 papers shown
Title
Provable Preimage Under-Approximation for Neural Networks (Full Version)
Xiyue Zhang
Benjie Wang
Marta Z. Kwiatkowska
AAML
31
7
0
05 May 2023
Boosting Verified Training for Robust Image Classifications via Abstraction
Zhaodi Zhang
Zhiyi Xue
Yang Chen
Si Liu
Yueling Zhang
J. Liu
Min Zhang
33
4
0
21 Mar 2023
SpArX: Sparse Argumentative Explanations for Neural Networks [Technical Report]
Hamed Ayoobi
Nico Potyka
Francesca Toni
16
17
0
23 Jan 2023
Efficiently Finding Adversarial Examples with DNN Preprocessing
Avriti Chauhan
Mohammad Afzal
Hrishikesh Karmarkar
Y. Elboher
Kumar Madhukar
Guy Katz
AAML
24
0
0
16 Nov 2022
Towards Global Neural Network Abstractions with Locally-Exact Reconstruction
Edoardo Manino
I. Bessa
Lucas C. Cordeiro
19
1
0
21 Oct 2022
Abstraction and Refinement: Towards Scalable and Exact Verification of Neural Networks
Jiaxiang Liu
Yunhan Xing
Xiaomu Shi
Fu Song
Zhiwu Xu
Zhong Ming
16
10
0
02 Jul 2022
A Domain-Theoretic Framework for Robustness Analysis of Neural Networks
Can Zhou
R. A. Shaikh
Yiran Li
Amin Farjudian
OOD
27
4
0
01 Mar 2022
An Abstraction-Refinement Approach to Verifying Convolutional Neural Networks
Matan Ostrovsky
Clark W. Barrett
Guy Katz
32
26
0
06 Jan 2022
A Review of Formal Methods applied to Machine Learning
Caterina Urban
Antoine Miné
28
55
0
06 Apr 2021
Abstract Neural Networks
Matthew Sotoudeh
Aditya V. Thakur
6
19
0
11 Sep 2020
DeepAbstract: Neural Network Abstraction for Accelerating Verification
P. Ashok
Vahid Hashemi
Jan Křetínský
S. Mohr
17
49
0
24 Jun 2020
Algorithms for Verifying Deep Neural Networks
Changliu Liu
Tomer Arnon
Christopher Lazarus
Christopher A. Strong
Clark W. Barrett
Mykel J. Kochenderfer
AAML
16
390
0
15 Mar 2019
Output Reachable Set Estimation and Verification for Multi-Layer Neural Networks
Weiming Xiang
Hoang-Dung Tran
Taylor T. Johnson
81
292
0
09 Aug 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
228
1,835
0
03 Feb 2017
Safety Verification of Deep Neural Networks
Xiaowei Huang
M. Kwiatkowska
Sen Wang
Min Wu
AAML
178
932
0
21 Oct 2016
1