ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.11091
  4. Cited By
EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline
  and Online RL

EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL

21 July 2020
Seyed Kamyar Seyed Ghasemipour
Dale Schuurmans
S. Gu
    OffRL
ArXivPDFHTML

Papers citing "EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL"

4 / 4 papers shown
Title
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on
  Open Problems
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems
Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
OffRL
GP
311
1,662
0
04 May 2020
CAQL: Continuous Action Q-Learning
CAQL: Continuous Action Q-Learning
Moonkyung Ryu
Yinlam Chow
Ross Anderson
Christian Tjandraatmadja
Craig Boutilier
159
41
0
26 Sep 2019
Input Convex Neural Networks
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
147
496
0
22 Sep 2016
Off-Policy Actor-Critic
Off-Policy Actor-Critic
T. Degris
Martha White
R. Sutton
OffRL
CML
138
222
0
22 May 2012
1