Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.13421
Cited By
Self-Adapting Recurrent Models for Object Pushing from Learning in Simulation
27 July 2020
Lin Cong
Michael Görner
Philipp Ruppel
Hongzhuo Liang
Norman Hendrich
Jianwei Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Self-Adapting Recurrent Models for Object Pushing from Learning in Simulation"
8 / 8 papers shown
Title
Precision-Focused Reinforcement Learning Model for Robotic Object Pushing
Lara Bergmann
David P. Leins
R. Haschke
Klaus Neumann
42
3
0
13 Nov 2024
Incremental Few-Shot Adaptation for Non-Prehensile Object Manipulation using Parallelizable Physics Simulators
Fabian Baumeister
Lukas Mack
Joerg Stueckler
44
2
0
20 Sep 2024
Non-Prehensile Aerial Manipulation using Model-Based Deep Reinforcement Learning
Cora A. Dimmig
Marin Kobilarov
31
1
0
01 Jul 2024
Biased-MPPI: Informing Sampling-Based Model Predictive Control by Fusing Ancillary Controllers
Elia Trevisan
Javier Alonso-Mora
27
15
0
17 Jan 2024
Sim-to-Real Model-Based and Model-Free Deep Reinforcement Learning for Tactile Pushing
Max Yang
Yijiong Lin
Alex Church
John Lloyd
Dandan Zhang
David A.W. Barton
Nathan Lepora
OffRL
38
12
0
26 Jul 2023
Sampling-based Model Predictive Control Leveraging Parallelizable Physics Simulations
Corrado Pezzato
C. Salmi
Max Spahn
Elia Trevisan
Javier Alonso-Mora
C. H. Corbato
26
5
0
18 Jul 2023
A Survey of Meta-Reinforcement Learning
Jacob Beck
Risto Vuorio
E. Liu
Zheng Xiong
L. Zintgraf
Chelsea Finn
Shimon Whiteson
OOD
OffRL
42
124
0
19 Jan 2023
Maximizing the Use of Environmental Constraints: A Pushing-Based Hybrid Position/Force Assembly Skill for Contact-Rich Tasks
Yunlei Shi
Zhaopeng Chen
Lin Cong
Yansong Wu
Martin Craiu-Müller
C. Yuan
Chunyang Chang
Lei Zhang
Jianwei Zhang
22
0
0
12 Aug 2022
1