Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2007.16061
Cited By
Graph signal processing for machine learning: A review and new perspectives
31 July 2020
Xiaowen Dong
D. Thanou
Laura Toni
M. Bronstein
P. Frossard
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Graph signal processing for machine learning: A review and new perspectives"
13 / 13 papers shown
Title
Learning Sheaf Laplacian Optimizing Restriction Maps
Leonardo Di Nino
Sergio Barbarossa
P. Di Lorenzo
47
0
0
31 Jan 2025
A Review of Graph-Powered Data Quality Applications for IoT Monitoring Sensor Networks
Pau Ferrer-Cid
Jose M. Barcelo-Ordinas
J. García-Vidal
37
2
0
28 Oct 2024
Learning signals defined on graphs with optimal transport and Gaussian process regression
Raphael Carpintero Perez
Sébastien da Veiga
Josselin Garnier
B. Staber
28
1
0
21 Oct 2024
Online Graph Filtering Over Expanding Graphs
Bishwadeep Das
Elvin Isufi
23
0
0
11 Sep 2024
Bayesian Optimization of Functions over Node Subsets in Graphs
Huidong Liang
Xingchen Wan
Xiaowen Dong
40
1
0
24 May 2024
Through the Dual-Prism: A Spectral Perspective on Graph Data Augmentation for Graph Classification
Yutong Xia
Runpeng Yu
Yuxuan Liang
Xavier Bresson
Xinchao Wang
Roger Zimmermann
35
4
0
18 Jan 2024
Learning the hub graphical Lasso model with the structured sparsity via an efficient algorithm
Chengjing Wang
Peipei Tang
Wen-Bin He
Meixia Lin
22
0
0
17 Aug 2023
Graph Federated Learning for CIoT Devices in Smart Home Applications
Arash Rasti-Meymandi
S. M. Sheikholeslami
J. Abouei
Konstantinos N. Plataniotis
FedML
15
18
0
29 Dec 2022
Challenges in anomaly and change point detection
Madalina Olteanu
Fabrice Rossi
Florian Yger
14
0
0
27 Dec 2022
Laplacian Constrained Precision Matrix Estimation: Existence and High Dimensional Consistency
E. Pavez
9
4
0
31 Oct 2021
How Powerful is Graph Convolution for Recommendation?
Yifei Shen
Yongji Wu
Yao Zhang
Caihua Shan
Jun Zhang
Khaled B. Letaief
Dongsheng Li
GNN
13
99
0
17 Aug 2021
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
231
3,202
0
24 Nov 2016
1