ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.16162
66
6
v1v2v3 (latest)

Imitative Planning using Conditional Normalizing Flow

31 July 2020
Shubhankar Agarwal
Harshit S. Sikchi
Cole Gulino
Eric Wilkinson
ArXiv (abs)PDFHTML
Abstract

We explore the application of normalizing flows for improving the performance of trajectory planning for autonomous vehicles (AVs). Normalizing flows provide an invertible mapping from a known prior distribution to a potentially complex, multi-modal target distribution and allow for fast sampling with exact PDF inference. By modeling a trajectory planner's cost manifold as an energy function we learn a scene conditioned mapping from the prior to a Boltzmann distribution over the AV control space. This mapping allows for control samples and their associated energy to be generated jointly and in parallel. We propose using neural autoregressive flow (NAF) as part of an end-to-end deep learned system that allows for utilizing sensors, map, and route information to condition the flow mapping. Finally, we demonstrate the effectiveness of our approach on real world datasets over IL and hand constructed trajectory sampling techniques.

View on arXiv
Comments on this paper