ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.00969
  4. Cited By
Predicted Composite Signed-Distance Fields for Real-Time Motion Planning
  in Dynamic Environments

Predicted Composite Signed-Distance Fields for Real-Time Motion Planning in Dynamic Environments

3 August 2020
M. N. Finean
W. Merkt
Ioannis Havoutis
ArXivPDFHTML

Papers citing "Predicted Composite Signed-Distance Fields for Real-Time Motion Planning in Dynamic Environments"

2 / 2 papers shown
Title
Motion planning for highly-dynamic unconditioned reflexes based on chained Signed Distance Functions
Ken Lin
Qi Ye
Tin Lun Lam
Zhibin Li
Jiming Chen
Gaofeng Li
66
0
0
15 Feb 2025
NTFields: Neural Time Fields for Physics-Informed Robot Motion Planning
NTFields: Neural Time Fields for Physics-Informed Robot Motion Planning
Ruiqi Ni
A. H. Qureshi
AI4CE
36
17
0
30 Sep 2022
1