ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.01915
  4. Cited By
Generative Ensemble Regression: Learning Particle Dynamics from
  Observations of Ensembles with Physics-Informed Deep Generative Models
v1v2 (latest)

Generative Ensemble Regression: Learning Particle Dynamics from Observations of Ensembles with Physics-Informed Deep Generative Models

5 August 2020
Liu Yang
C. Daskalakis
George Karniadakis
ArXiv (abs)PDFHTML

Papers citing "Generative Ensemble Regression: Learning Particle Dynamics from Observations of Ensembles with Physics-Informed Deep Generative Models"

7 / 7 papers shown
Weak Collocation Regression for Inferring Stochastic Dynamics with
  Lévy Noise
Weak Collocation Regression for Inferring Stochastic Dynamics with Lévy NoiseCommunications in Computational Physics (Commun. Comput. Phys.), 2024
Kaiyuan Gao
Liwei Lu
Zhijun Zeng
Pipi Hu
Yi Zhu
343
1
0
13 Mar 2024
Learning Effective SDEs from Brownian Dynamics Simulations of Colloidal
  Particles
Learning Effective SDEs from Brownian Dynamics Simulations of Colloidal Particles
N. Evangelou
Felix Dietrich
J. M. Bello-Rivas
Alex J Yeh
Rachel Stein
M. Bevan
Ioannis G. Kevekidis
DiffM
452
5
0
30 Apr 2022
Extracting Stochastic Governing Laws by Nonlocal Kramers-Moyal Formulas
Extracting Stochastic Governing Laws by Nonlocal Kramers-Moyal Formulas
Yubin Lu
Yang Li
Jinqiao Duan
199
18
0
28 Aug 2021
Learning the temporal evolution of multivariate densities via
  normalizing flows
Learning the temporal evolution of multivariate densities via normalizing flowsChaos (Chaos), 2021
Yubin Lu
R. Maulik
Ting Gao
Felix Dietrich
Ioannis G. Kevrekidis
Jinqiao Duan
218
27
0
29 Jul 2021
Learning effective stochastic differential equations from microscopic
  simulations: linking stochastic numerics to deep learning
Learning effective stochastic differential equations from microscopic simulations: linking stochastic numerics to deep learningChaos (Chaos), 2021
Felix Dietrich
Alexei Makeev
George A. Kevrekidis
N. Evangelou
Tom S. Bertalan
Sebastian Reich
Ioannis G. Kevrekidis
DiffM
287
53
0
10 Jun 2021
Measure-conditional Discriminator with Stationary Optimum for GANs and
  Statistical Distance Surrogates
Measure-conditional Discriminator with Stationary Optimum for GANs and Statistical Distance Surrogates
Liu Yang
Tingwei Meng
George Karniadakis
125
1
0
17 Jan 2021
Solving Inverse Stochastic Problems from Discrete Particle Observations
  Using the Fokker-Planck Equation and Physics-informed Neural Networks
Solving Inverse Stochastic Problems from Discrete Particle Observations Using the Fokker-Planck Equation and Physics-informed Neural Networks
Xiaoli Chen
Liu Yang
Jinqiao Duan
George Karniadakis
210
105
0
24 Aug 2020
1