ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.02545
  4. Cited By
A deep network construction that adapts to intrinsic dimensionality
  beyond the domain
v1v2v3 (latest)

A deep network construction that adapts to intrinsic dimensionality beyond the domain

6 August 2020
A. Cloninger
T. Klock
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "A deep network construction that adapts to intrinsic dimensionality beyond the domain"

4 / 4 papers shown
Title
Deep Operator Learning Lessens the Curse of Dimensionality for PDEs
Deep Operator Learning Lessens the Curse of Dimensionality for PDEs
Ke Chen
Chunmei Wang
Haizhao Yang
AI4CE
66
14
0
28 Jan 2023
Effects of Data Geometry in Early Deep Learning
Effects of Data Geometry in Early Deep Learning
Saket Tiwari
George Konidaris
150
7
0
29 Dec 2022
Deep Nonparametric Regression on Approximate Manifolds: Non-Asymptotic
  Error Bounds with Polynomial Prefactors
Deep Nonparametric Regression on Approximate Manifolds: Non-Asymptotic Error Bounds with Polynomial Prefactors
Yuling Jiao
Guohao Shen
Yuanyuan Lin
Jian Huang
121
52
0
14 Apr 2021
Nonparametric Regression on Low-Dimensional Manifolds using Deep ReLU
  Networks : Function Approximation and Statistical Recovery
Nonparametric Regression on Low-Dimensional Manifolds using Deep ReLU Networks : Function Approximation and Statistical Recovery
Minshuo Chen
Haoming Jiang
Wenjing Liao
T. Zhao
154
92
0
05 Aug 2019
1