ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.03997
  4. Cited By
HAPI: Hardware-Aware Progressive Inference

HAPI: Hardware-Aware Progressive Inference

10 August 2020
Stefanos Laskaridis
Stylianos I. Venieris
Hyeji Kim
Nicholas D. Lane
ArXivPDFHTML

Papers citing "HAPI: Hardware-Aware Progressive Inference"

13 / 13 papers shown
Title
Tiny Models are the Computational Saver for Large Models
Tiny Models are the Computational Saver for Large Models
Qingyuan Wang
B. Cardiff
Antoine Frappé
Benoît Larras
Deepu John
41
2
0
26 Mar 2024
Federated Learning for Inference at Anytime and Anywhere
Federated Learning for Inference at Anytime and Anywhere
Zicheng Liu
Da Li
Javier Fernandez-Marques
Stefanos Laskaridis
Yan Gao
L. Dudziak
Stan Z. Li
S. Hu
Timothy M. Hospedales
FedML
21
5
0
08 Dec 2022
The Future of Consumer Edge-AI Computing
The Future of Consumer Edge-AI Computing
Stefanos Laskaridis
Stylianos I. Venieris
Alexandros Kouris
Rui Li
Nicholas D. Lane
42
8
0
19 Oct 2022
Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
  Networks on Edge NPUs
Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural Networks on Edge NPUs
Alexandros Kouris
Stylianos I. Venieris
Stefanos Laskaridis
Nicholas D. Lane
39
8
0
27 Sep 2022
Enabling All In-Edge Deep Learning: A Literature Review
Enabling All In-Edge Deep Learning: A Literature Review
Praveen Joshi
Mohammed Hasanuzzaman
Chandra Thapa
Haithem Afli
T. Scully
23
22
0
07 Apr 2022
LegoDNN: Block-grained Scaling of Deep Neural Networks for Mobile Vision
LegoDNN: Block-grained Scaling of Deep Neural Networks for Mobile Vision
Rui Han
Qinglong Zhang
C. Liu
Guoren Wang
Jian Tang
L. Chen
21
43
0
18 Dec 2021
Smart at what cost? Characterising Mobile Deep Neural Networks in the
  wild
Smart at what cost? Characterising Mobile Deep Neural Networks in the wild
Mario Almeida
Stefanos Laskaridis
Abhinav Mehrotra
L. Dudziak
Ilias Leontiadis
Nicholas D. Lane
HAI
112
44
0
28 Sep 2021
OODIn: An Optimised On-Device Inference Framework for Heterogeneous
  Mobile Devices
OODIn: An Optimised On-Device Inference Framework for Heterogeneous Mobile Devices
Stylianos I. Venieris
Ioannis Panopoulos
I. Venieris
42
14
0
08 Jun 2021
DynO: Dynamic Onloading of Deep Neural Networks from Cloud to Device
DynO: Dynamic Onloading of Deep Neural Networks from Cloud to Device
Mario Almeida
Stefanos Laskaridis
Stylianos I. Venieris
Ilias Leontiadis
Nicholas D. Lane
17
36
0
20 Apr 2021
FjORD: Fair and Accurate Federated Learning under heterogeneous targets
  with Ordered Dropout
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout
Samuel Horváth
Stefanos Laskaridis
Mario Almeida
Ilias Leondiadis
Stylianos I. Venieris
Nicholas D. Lane
181
267
0
26 Feb 2021
It's always personal: Using Early Exits for Efficient On-Device CNN
  Personalisation
It's always personal: Using Early Exits for Efficient On-Device CNN Personalisation
Ilias Leontiadis
Stefanos Laskaridis
Stylianos I. Venieris
Nicholas D. Lane
65
29
0
02 Feb 2021
SPINN: Synergistic Progressive Inference of Neural Networks over Device
  and Cloud
SPINN: Synergistic Progressive Inference of Neural Networks over Device and Cloud
Stefanos Laskaridis
Stylianos I. Venieris
Mario Almeida
Ilias Leontiadis
Nicholas D. Lane
28
265
0
14 Aug 2020
NetAdapt: Platform-Aware Neural Network Adaptation for Mobile
  Applications
NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications
Tien-Ju Yang
Andrew G. Howard
Bo Chen
Xiao Zhang
Alec Go
Mark Sandler
Vivienne Sze
Hartwig Adam
90
515
0
09 Apr 2018
1