Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.05000
Cited By
Degree-Quant: Quantization-Aware Training for Graph Neural Networks
11 August 2020
Shyam A. Tailor
Javier Fernandez-Marques
Nicholas D. Lane
GNN
MQ
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Degree-Quant: Quantization-Aware Training for Graph Neural Networks"
25 / 25 papers shown
Title
Diffusion Model Quantization: A Review
Qian Zeng
Chenggong Hu
Mingli Song
Jie Song
MQ
41
0
0
08 May 2025
Inference-friendly Graph Compression for Graph Neural Networks
Yangxin Fan
Haolai Che
Yinghui Wu
GNN
51
0
0
17 Apr 2025
FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs
Yuanchang Zhou
Siyu Hu
Chen Wang
Lin-Wang Wang
Guangming Tan
Weile Jia
AI4CE
GNN
43
0
0
30 Dec 2024
On the Impact of White-box Deployment Strategies for Edge AI on Latency and Model Performance
Jaskirat Singh
Bram Adams
Ahmed E. Hassan
VLM
29
0
0
01 Nov 2024
On the Impact of Black-box Deployment Strategies for Edge AI on Latency and Model Performance
Jaskirat Singh
Emad Fallahzadeh
Bram Adams
Ahmed E. Hassan
MQ
32
3
0
25 Mar 2024
Better Schedules for Low Precision Training of Deep Neural Networks
Cameron R. Wolfe
Anastasios Kyrillidis
35
1
0
04 Mar 2024
Low-bit Quantization for Deep Graph Neural Networks with Smoothness-aware Message Propagation
Shuang Wang
B. Eravcı
Rustam Guliyev
Hakan Ferhatosmanoglu
GNN
MQ
19
5
0
29 Aug 2023
Frameless Graph Knowledge Distillation
Dai Shi
Zhiqi Shao
Yi Guo
Junbin Gao
21
4
0
13 Jul 2023
The Evolution of Distributed Systems for Graph Neural Networks and their Origin in Graph Processing and Deep Learning: A Survey
Jana Vatter
R. Mayer
Hans-Arno Jacobsen
GNN
AI4TS
AI4CE
31
23
0
23 May 2023
Patch-wise Mixed-Precision Quantization of Vision Transformer
Junrui Xiao
Zhikai Li
Lianwei Yang
Qingyi Gu
MQ
22
12
0
11 May 2023
P4L: Privacy Preserving Peer-to-Peer Learning for Infrastructureless Setups
Ioannis Arapakis
P. Papadopoulos
Kleomenis Katevas
Diego Perino
11
7
0
26 Feb 2023
ACQ: Improving Generative Data-free Quantization Via Attention Correction
Jixing Li
Xiaozhou Guo
Benzhe Dai
Guoliang Gong
Min Jin
Gang Chen
Wenyu Mao
Huaxiang Lu
MQ
20
4
0
18 Jan 2023
SA-MLP: Distilling Graph Knowledge from GNNs into Structure-Aware MLP
Jie Chen
Shouzhen Chen
Mingyuan Bai
Junbin Gao
Junping Zhang
Jian Pu
24
10
0
18 Oct 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Xingliang Yuan
Shirui Pan
Hanghang Tong
Jian Pei
41
98
0
16 May 2022
GCoD: Graph Convolutional Network Acceleration via Dedicated Algorithm and Accelerator Co-Design
Sung Une Lee
Boming Xia
Yongan Zhang
Ang Li
Yingyan Lin
GNN
47
47
0
22 Dec 2021
QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core
Yuke Wang
Boyuan Feng
Yufei Ding
GNN
22
39
0
18 Nov 2021
VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using Vector Quantization
Mucong Ding
Kezhi Kong
Jingling Li
Chen Zhu
John P. Dickerson
Furong Huang
Tom Goldstein
GNN
MQ
25
46
0
27 Oct 2021
Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation
Shichang Zhang
Yozen Liu
Yizhou Sun
Neil Shah
20
172
0
17 Oct 2021
Federated Graph Learning -- A Position Paper
Hu Zhang
T. Shen
Fei Wu
Mingyang Yin
Hongxia Yang
Chao Wu
FedML
6
49
0
24 May 2021
Early-Bird GCNs: Graph-Network Co-Optimization Towards More Efficient GCN Training and Inference via Drawing Early-Bird Lottery Tickets
Haoran You
Zhihan Lu
Zijian Zhou
Y. Fu
Yingyan Lin
GNN
33
30
0
01 Mar 2021
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
178
1,018
0
06 Mar 2020
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
183
907
0
02 Mar 2020
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
219
1,329
0
12 Feb 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
159
1,748
0
02 Mar 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
1