ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.05803
  4. Cited By
Explaining Naive Bayes and Other Linear Classifiers with Polynomial Time
  and Delay

Explaining Naive Bayes and Other Linear Classifiers with Polynomial Time and Delay

13 August 2020
Sasha Rubin
Thomas Gerspacher
Martin C. Cooper
Alexey Ignatiev
Nina Narodytska
    FAtt
ArXivPDFHTML

Papers citing "Explaining Naive Bayes and Other Linear Classifiers with Polynomial Time and Delay"

16 / 16 papers shown
Title
On the Complexity of Global Necessary Reasons to Explain Classification
On the Complexity of Global Necessary Reasons to Explain Classification
M. Calautti
Enrico Malizia
Cristian Molinaro
FAtt
63
0
0
12 Jan 2025
Anytime Approximate Formal Feature Attribution
Anytime Approximate Formal Feature Attribution
Jinqiang Yu
Graham Farr
Alexey Ignatiev
Peter J. Stuckey
30
2
0
12 Dec 2023
Logic for Explainable AI
Logic for Explainable AI
Adnan Darwiche
30
8
0
09 May 2023
VeriX: Towards Verified Explainability of Deep Neural Networks
VeriX: Towards Verified Explainability of Deep Neural Networks
Min Wu
Haoze Wu
Clark W. Barrett
AAML
42
10
0
02 Dec 2022
Feature Necessity & Relevancy in ML Classifier Explanations
Feature Necessity & Relevancy in ML Classifier Explanations
Xuanxiang Huang
Martin C. Cooper
António Morgado
Jordi Planes
Sasha Rubin
FAtt
32
18
0
27 Oct 2022
Logic-Based Explainability in Machine Learning
Logic-Based Explainability in Machine Learning
Sasha Rubin
LRM
XAI
47
39
0
24 Oct 2022
On Computing Relevant Features for Explaining NBCs
On Computing Relevant Features for Explaining NBCs
Yacine Izza
Sasha Rubin
33
5
0
11 Jul 2022
Eliminating The Impossible, Whatever Remains Must Be True
Eliminating The Impossible, Whatever Remains Must Be True
Jinqiang Yu
Alexey Ignatiev
Peter J. Stuckey
Nina Narodytska
Sasha Rubin
19
23
0
20 Jun 2022
Foundations of Symbolic Languages for Model Interpretability
Foundations of Symbolic Languages for Model Interpretability
Marcelo Arenas
Daniel Baez
Pablo Barceló
Jorge A. Pérez
Bernardo Subercaseaux
ReLM
LRM
21
24
0
05 Oct 2021
Model Explanations via the Axiomatic Causal Lens
Gagan Biradar
Vignesh Viswanathan
Yair Zick
XAI
CML
25
1
0
08 Sep 2021
On Efficiently Explaining Graph-Based Classifiers
On Efficiently Explaining Graph-Based Classifiers
Xuanxiang Huang
Yacine Izza
Alexey Ignatiev
Sasha Rubin
FAtt
34
37
0
02 Jun 2021
Explanations for Monotonic Classifiers
Explanations for Monotonic Classifiers
Sasha Rubin
Thomas Gerspacher
M. Cooper
Alexey Ignatiev
Nina Narodytska
FAtt
8
43
0
01 Jun 2021
Probabilistic Sufficient Explanations
Probabilistic Sufficient Explanations
Eric Wang
Pasha Khosravi
Guy Van den Broeck
XAI
FAtt
TPM
27
23
0
21 May 2021
SAT-Based Rigorous Explanations for Decision Lists
SAT-Based Rigorous Explanations for Decision Lists
Alexey Ignatiev
Sasha Rubin
XAI
22
44
0
14 May 2021
On the Computational Intelligibility of Boolean Classifiers
On the Computational Intelligibility of Boolean Classifiers
Gilles Audemard
S. Bellart
Louenas Bounia
F. Koriche
Jean-Marie Lagniez
Pierre Marquis
19
56
0
13 Apr 2021
Model Interpretability through the Lens of Computational Complexity
Model Interpretability through the Lens of Computational Complexity
Pablo Barceló
Mikaël Monet
Jorge A. Pérez
Bernardo Subercaseaux
124
94
0
23 Oct 2020
1