ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.06415
  4. Cited By
Orbital Graph Convolutional Neural Network for Material Property
  Prediction

Orbital Graph Convolutional Neural Network for Material Property Prediction

14 August 2020
M. Karamad
Rishikesh Magar
Yuting Shi
Samira Siahrostami
I. Gates
A. Farimani
ArXiv (abs)PDFHTML

Papers citing "Orbital Graph Convolutional Neural Network for Material Property Prediction"

15 / 15 papers shown
Title
SA-GAT-SR: Self-Adaptable Graph Attention Networks with Symbolic Regression for high-fidelity material property prediction
SA-GAT-SR: Self-Adaptable Graph Attention Networks with Symbolic Regression for high-fidelity material property prediction
Junchi Liu
Ying Tang
Sergei Tretiak
Wenhui Duan
Liujiang Zhou
192
0
0
01 May 2025
Topological, or Non-topological? A Deep Learning Based Prediction
Topological, or Non-topological? A Deep Learning Based Prediction
Ashiqur Rasul
M. S. Hossain
Ankan Ghosh Dastider
Himaddri Roy
M. Hasan
Q. D. Khosru
AI4CE
19
0
0
29 Oct 2023
GPT-MolBERTa: GPT Molecular Features Language Model for molecular
  property prediction
GPT-MolBERTa: GPT Molecular Features Language Model for molecular property prediction
Suryanarayanan Balaji
Rishikesh Magar
Yayati Jadhav
and Amir Barati Farimani
147
15
0
20 Sep 2023
Capturing long-range interaction with reciprocal space neural network
Capturing long-range interaction with reciprocal space neural network
Hongyu Yu
Liangliang Hong
Shiyou Chen
X. Gong
Hongjun Xiang
55
12
0
30 Nov 2022
Synthetic data enable experiments in atomistic machine learning
Synthetic data enable experiments in atomistic machine learning
John L A Gardner
Z. Beaulieu
Volker L. Deringer
70
9
0
29 Nov 2022
Graph Neural Networks for Molecules
Graph Neural Networks for Molecules
Yuyang Wang
Zijie Li
A. Farimani
GNNAI4CE
156
28
0
12 Sep 2022
TransPolymer: a Transformer-based language model for polymer property
  predictions
TransPolymer: a Transformer-based language model for polymer property predictions
Changwen Xu
Yuyang Wang
A. Farimani
123
93
0
03 Sep 2022
Graph neural networks for materials science and chemistry
Graph neural networks for materials science and chemistry
Patrick Reiser
Marlen Neubert
André Eberhard
Luca Torresi
Chen Zhou
...
Houssam Metni
Clint van Hoesel
Henrik Schopmans
T. Sommer
Pascal Friederich
GNNAI4CE
125
422
0
05 Aug 2022
Crystal Twins: Self-supervised Learning for Crystalline Material
  Property Prediction
Crystal Twins: Self-supervised Learning for Crystalline Material Property Prediction
Rishikesh Magar
Yuyang Wang
Amir Barati Farimani
81
63
0
04 May 2022
Attention-wise masked graph contrastive learning for predicting
  molecular property
Attention-wise masked graph contrastive learning for predicting molecular property
Hui Liu
Yibiao Huang
Xuejun Liu
L. Deng
66
34
0
02 May 2022
Graph Neural Networks Accelerated Molecular Dynamics
Graph Neural Networks Accelerated Molecular Dynamics
Zijie Li
Kazem Meidani
Prakarsh Yadav
A. Farimani
GNNAI4CE
72
60
0
06 Dec 2021
Deep Reinforcement Learning Optimizes Graphene Nanopores for Efficient
  Desalination
Deep Reinforcement Learning Optimizes Graphene Nanopores for Efficient Desalination
Yuyang Wang
Zhonglin Cao
Amir Barati Farimani
AI4CE
96
61
0
19 Jan 2021
Machine-learning enhanced dark soliton detection in Bose-Einstein
  condensates
Machine-learning enhanced dark soliton detection in Bose-Einstein condensates
Shangjie Guo
A. R. Fritsch
Craig S. Greenberg
I. Spielman
Justyna P. Zwolak
41
18
0
14 Jan 2021
An Introduction to Electrocatalyst Design using Machine Learning for
  Renewable Energy Storage
An Introduction to Electrocatalyst Design using Machine Learning for Renewable Energy Storage
C. L. Zitnick
L. Chanussot
Abhishek Das
Siddharth Goyal
Javier Heras-Domingo
...
Kevin Tran
Brandon M. Wood
Junwoong Yoon
Devi Parikh
Zachary W. Ulissi
73
75
0
14 Oct 2020
A Tailored Convolutional Neural Network for Nonlinear Manifold Learning
  of Computational Physics Data using Unstructured Spatial Discretizations
A Tailored Convolutional Neural Network for Nonlinear Manifold Learning of Computational Physics Data using Unstructured Spatial Discretizations
John Tencer
Kevin Potter
AI4CE
61
13
0
11 Jun 2020
1