ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.06543
  4. Cited By
AntiDote: Attention-based Dynamic Optimization for Neural Network
  Runtime Efficiency

AntiDote: Attention-based Dynamic Optimization for Neural Network Runtime Efficiency

14 August 2020
Fuxun Yu
Chenchen Liu
Di Wang
Yanzhi Wang
Xiang Chen
ArXivPDFHTML

Papers citing "AntiDote: Attention-based Dynamic Optimization for Neural Network Runtime Efficiency"

4 / 4 papers shown
Title
Survey: Exploiting Data Redundancy for Optimization of Deep Learning
Survey: Exploiting Data Redundancy for Optimization of Deep Learning
Jou-An Chen
Wei Niu
Bin Ren
Yanzhi Wang
Xipeng Shen
23
24
0
29 Aug 2022
Carrying out CNN Channel Pruning in a White Box
Carrying out CNN Channel Pruning in a White Box
Yuxin Zhang
Mingbao Lin
Chia-Wen Lin
Jie Chen
Feiyue Huang
Yongjian Wu
Yonghong Tian
Rongrong Ji
VLM
39
58
0
24 Apr 2021
Third ArchEdge Workshop: Exploring the Design Space of Efficient Deep
  Neural Networks
Third ArchEdge Workshop: Exploring the Design Space of Efficient Deep Neural Networks
Fuxun Yu
Dimitrios Stamoulis
Di Wang
Dimitrios Lymberopoulos
Xiang Chen
3DV
22
1
0
22 Nov 2020
Distilling Critical Paths in Convolutional Neural Networks
Distilling Critical Paths in Convolutional Neural Networks
Fuxun Yu
Zhuwei Qin
Xiang Chen
28
21
0
28 Oct 2018
1