Communities
Connect sessions
AI calendar
Organizations
Contact Sales
Search
Open menu
Home
Papers
2008.06786
Cited By
The Neural Tangent Kernel in High Dimensions: Triple Descent and a Multi-Scale Theory of Generalization
15 August 2020
Ben Adlam
Jeffrey Pennington
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"The Neural Tangent Kernel in High Dimensions: Triple Descent and a Multi-Scale Theory of Generalization"
50 / 94 papers shown
Title
Eigenvalue distribution of the Neural Tangent Kernel in the quadratic scaling
Lucas Benigni
Elliot Paquette
44
0
0
27 Aug 2025
Geometry of Neural Reinforcement Learning in Continuous State and Action Spaces
Saket Tiwari
Omer Gottesman
George Konidaris
82
0
0
28 Jul 2025
Eigenspectrum Analysis of Neural Networks without Aspect Ratio Bias
Yuanzhe Hu
Kinshuk Goel
Vlad Killiakov
Yaoqing Yang
161
2
0
06 Jun 2025
Random at First, Fast at Last: NTK-Guided Fourier Pre-Processing for Tabular DL
Renat Sergazinov
Jing Wu
Shao-An Yin
AAML
LMTD
110
0
0
03 Jun 2025
auto-fpt: Automating Free Probability Theory Calculations for Machine Learning Theory
Arjun Subramonian
Elvis Dohmatob
123
0
0
14 Apr 2025
Gradient Descent Robustly Learns the Intrinsic Dimension of Data in Training Convolutional Neural Networks
Chenyang Zhang
Peifeng Gao
Difan Zou
Yuan Cao
OOD
MLT
201
0
0
11 Apr 2025
High-dimensional ridge regression with random features for non-identically distributed data with a variance profile
Issa-Mbenard Dabo
Jérémie Bigot
89
0
0
03 Apr 2025
Deep Linear Network Training Dynamics from Random Initialization: Data, Width, Depth, and Hyperparameter Transfer
Blake Bordelon
Cengiz Pehlevan
AI4CE
427
4
0
04 Feb 2025
Generalization for Least Squares Regression With Simple Spiked Covariances
Jiping Li
Rishi Sonthalia
119
1
0
17 Oct 2024
Strong Model Collapse
Elvis Dohmatob
Yunzhen Feng
Arjun Subramonian
Julia Kempe
128
26
0
07 Oct 2024
Implicit Regularization Paths of Weighted Neural Representations
Jin-Hong Du
Pratik Patil
115
0
0
28 Aug 2024
From Spikes to Heavy Tails: Unveiling the Spectral Evolution of Neural Networks
Vignesh Kothapalli
Tianyu Pang
Shenyang Deng
Zongmin Liu
Yaoqing Yang
138
4
0
07 Jun 2024
Learning Analysis of Kernel Ridgeless Regression with Asymmetric Kernel Learning
Fan He
Mingzhe He
Lei Shi
Xiaolin Huang
Johan A. K. Suykens
109
1
0
03 Jun 2024
Signal-Plus-Noise Decomposition of Nonlinear Spiked Random Matrix Models
Behrad Moniri
Hamed Hassani
151
2
0
28 May 2024
High dimensional analysis reveals conservative sharpening and a stochastic edge of stability
Atish Agarwala
Jeffrey Pennington
171
7
0
30 Apr 2024
Understanding Optimal Feature Transfer via a Fine-Grained Bias-Variance Analysis
Yufan Li
Subhabrata Sen
Ben Adlam
MLT
221
2
0
18 Apr 2024
Theoretical and Empirical Insights into the Origins of Degree Bias in Graph Neural Networks
Arjun Subramonian
Jian Kang
Yizhou Sun
AI4CE
99
6
0
04 Apr 2024
Benign overfitting in leaky ReLU networks with moderate input dimension
Kedar Karhadkar
Erin E. George
Michael Murray
Guido Montúfar
Deanna Needell
MLT
152
2
0
11 Mar 2024
"Lossless" Compression of Deep Neural Networks: A High-dimensional Neural Tangent Kernel Approach
Lingyu Gu
Yongqiang Du
Yuan Zhang
Di Xie
Shiliang Pu
Robert C. Qiu
Zhenyu Liao
119
9
0
01 Mar 2024
Asymptotics of Learning with Deep Structured (Random) Features
Dominik Schröder
Daniil Dmitriev
Hugo Cui
Bruno Loureiro
153
8
0
21 Feb 2024
Average gradient outer product as a mechanism for deep neural collapse
Daniel Beaglehole
Peter Súkeník
Marco Mondelli
Misha Belkin
AI4CE
164
15
0
21 Feb 2024
Feature learning as alignment: a structural property of gradient descent in non-linear neural networks
Daniel Beaglehole
Ioannis Mitliagkas
Atish Agarwala
MLT
143
3
0
07 Feb 2024
A Dynamical Model of Neural Scaling Laws
Blake Bordelon
Alexander B. Atanasov
Cengiz Pehlevan
281
53
0
02 Feb 2024
The Surprising Harmfulness of Benign Overfitting for Adversarial Robustness
Yifan Hao
Tong Zhang
AAML
223
5
0
19 Jan 2024
A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks
Behrad Moniri
Donghwan Lee
Hamed Hassani
Guang Cheng
MLT
212
29
0
11 Oct 2023
Asymptotically free sketched ridge ensembles: Risks, cross-validation, and tuning
Filip Szatkowski
Daniel LeJeune
141
10
0
06 Oct 2023
Corrected generalized cross-validation for finite ensembles of penalized estimators
Pierre C. Bellec
Jin-Hong Du
Takuya Koriyama
Pratik Patil
Kai Tan
190
5
0
02 Oct 2023
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
T. Getu
Georges Kaddoum
M. Bennis
155
1
0
13 Sep 2023
Six Lectures on Linearized Neural Networks
Theodor Misiakiewicz
Andrea Montanari
208
15
0
25 Aug 2023
Eight challenges in developing theory of intelligence
Haiping Huang
127
12
0
20 Jun 2023
Training shallow ReLU networks on noisy data using hinge loss: when do we overfit and is it benign?
Erin E. George
Michael Murray
W. Swartworth
Deanna Needell
MLT
106
5
0
16 Jun 2023
Asymptotics of Bayesian Uncertainty Estimation in Random Features Regression
You-Hyun Baek
S. Berchuck
Sayan Mukherjee
171
0
0
06 Jun 2023
Neural (Tangent Kernel) Collapse
Mariia Seleznova
Dana Weitzner
Raja Giryes
Gitta Kutyniok
H. Chou
152
12
0
25 May 2023
Least Squares Regression Can Exhibit Under-Parameterized Double Descent
Xinyue Li
Rishi Sonthalia
146
4
0
24 May 2023
How Spurious Features Are Memorized: Precise Analysis for Random and NTK Features
Simone Bombari
Marco Mondelli
AAML
155
9
0
20 May 2023
Subsample Ridge Ensembles: Equivalences and Generalized Cross-Validation
Jin-Hong Du
Pratik V. Patil
Arun K. Kuchibhotla
133
11
0
25 Apr 2023
Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean Field Neural Networks
Blake Bordelon
Cengiz Pehlevan
MLT
151
36
0
06 Apr 2023
Gradient flow on extensive-rank positive semi-definite matrix denoising
A. Bodin
N. Macris
111
4
0
16 Mar 2023
Benign Overfitting for Two-layer ReLU Convolutional Neural Networks
Yiwen Kou
Zi-Yuan Chen
Yuanzhou Chen
Quanquan Gu
MLT
119
18
0
07 Mar 2023
Learning curves for deep structured Gaussian feature models
Jacob A. Zavatone-Veth
Cengiz Pehlevan
MLT
133
12
0
01 Mar 2023
Some Fundamental Aspects about Lipschitz Continuity of Neural Networks
Grigory Khromov
Sidak Pal Singh
252
16
0
21 Feb 2023
Beyond the Universal Law of Robustness: Sharper Laws for Random Features and Neural Tangent Kernels
Simone Bombari
Shayan Kiyani
Marco Mondelli
AAML
207
11
0
03 Feb 2023
Demystifying Disagreement-on-the-Line in High Dimensions
Dong-Hwan Lee
Behrad Moniri
Xinmeng Huang
Guang Cheng
Hamed Hassani
131
12
0
31 Jan 2023
Deep networks for system identification: a Survey
G. Pillonetto
Aleksandr Aravkin
Daniel Gedon
L. Ljung
Antônio H. Ribeiro
Thomas B. Schon
OOD
147
63
0
30 Jan 2023
Bayesian Interpolation with Deep Linear Networks
Boris Hanin
Alexander Zlokapa
203
28
0
29 Dec 2022
The Onset of Variance-Limited Behavior for Networks in the Lazy and Rich Regimes
Alexander B. Atanasov
Blake Bordelon
Sabarish Sainathan
Cengiz Pehlevan
150
29
0
23 Dec 2022
Gradient flow in the gaussian covariate model: exact solution of learning curves and multiple descent structures
Antione Bodin
N. Macris
134
4
0
13 Dec 2022
Spectral Evolution and Invariance in Linear-width Neural Networks
Zhichao Wang
A. Engel
Anand D. Sarwate
Ioana Dumitriu
Tony Chiang
178
22
0
11 Nov 2022
Overparameterized random feature regression with nearly orthogonal data
Zhichao Wang
Yizhe Zhu
155
5
0
11 Nov 2022
Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes
Liam Hodgkinson
Christopher van der Heide
Fred Roosta
Michael W. Mahoney
UQCV
148
6
0
14 Oct 2022
1
2
Next