ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.10109
  4. Cited By
Stable discovery of interpretable subgroups via calibration in causal
  studies
v1v2 (latest)

Stable discovery of interpretable subgroups via calibration in causal studies

23 August 2020
Raaz Dwivedi
Yan Shuo Tan
Briton Park
Mian Wei
Kevin Horgan
D. Madigan
Bin Yu
    CML
ArXiv (abs)PDFHTML

Papers citing "Stable discovery of interpretable subgroups via calibration in causal studies"

11 / 11 papers shown
Title
M-learner:A Flexible And Powerful Framework To Study Heterogeneous Treatment Effect In Mediation Model
M-learner:A Flexible And Powerful Framework To Study Heterogeneous Treatment Effect In Mediation Model
Xingyu Li
Qing Liu
Tony Jiang
Hong Amy Xia
Brian P. Hobbs
Peng Wei
45
0
0
23 May 2025
PCS-UQ: Uncertainty Quantification via the Predictability-Computability-Stability Framework
PCS-UQ: Uncertainty Quantification via the Predictability-Computability-Stability Framework
Abhineet Agarwal
Michael Xiao
Rebecca L. Barter
Omer Ronen
Boyu Fan
Bin Yu
69
0
0
13 May 2025
Hierarchical and Density-based Causal Clustering
Hierarchical and Density-based Causal Clustering
Kwangho Kim
Jisu Kim
Larry A. Wasserman
Edward H. Kennedy
CML
95
0
0
02 Nov 2024
Causal Q-Aggregation for CATE Model Selection
Causal Q-Aggregation for CATE Model Selection
Hui Lan
Vasilis Syrgkanis
CML
107
4
0
25 Oct 2023
Causal isotonic calibration for heterogeneous treatment effects
Causal isotonic calibration for heterogeneous treatment effects
L. Laan
Ernesto Ulloa-Pérez
M. Carone
Alexander Luedtke
90
12
0
27 Feb 2023
Quantitative probing: Validating causal models using quantitative domain
  knowledge
Quantitative probing: Validating causal models using quantitative domain knowledge
Daniel Grünbaum
M. L. Stern
E. Lang
55
6
0
07 Sep 2022
Valid Inference after Causal Discovery
Valid Inference after Causal Discovery
Paula Gradu
Tijana Zrnic
Yixin Wang
Michael I. Jordan
CML
81
8
0
11 Aug 2022
Statistical Inference for Heterogeneous Treatment Effects Discovered by
  Generic Machine Learning in Randomized Experiments
Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments
Kosuke Imai
Michael Lingzhi Li
CML
51
15
0
28 Mar 2022
Interpretable Personalized Experimentation
Interpretable Personalized Experimentation
Han Wu
S. Tan
Weiwei Li
Mia Garrard
Adam Obeng
Drew Dimmery
Shaun Singh
Hanson Wang
Daniel R. Jiang
E. Bakshy
65
6
0
05 Nov 2021
DoWhy: Addressing Challenges in Expressing and Validating Causal
  Assumptions
DoWhy: Addressing Challenges in Expressing and Validating Causal Assumptions
Amit Sharma
Vasilis Syrgkanis
Cheng Zhang
Emre Kıcıman
75
26
0
27 Aug 2021
Causal Rule Ensemble: Interpretable Discovery and Inference of
  Heterogeneous Treatment Effects
Causal Rule Ensemble: Interpretable Discovery and Inference of Heterogeneous Treatment Effects
Falco J. Bargagli-Stoffi
Riccardo Cadei
Kwonsang Lee
Francesca Dominici
CML
58
16
0
18 Sep 2020
1