Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.10653
Cited By
Solving Inverse Stochastic Problems from Discrete Particle Observations Using the Fokker-Planck Equation and Physics-informed Neural Networks
24 August 2020
Xiaoli Chen
Liu Yang
Jinqiao Duan
George Karniadakis
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Solving Inverse Stochastic Problems from Discrete Particle Observations Using the Fokker-Planck Equation and Physics-informed Neural Networks"
35 / 35 papers shown
Title
Time-dependent density estimation using binary classifiers
Agnimitra Dasgupta
Javier Murgoitio-Esandi
Ali Fardisi
Assad A. Oberai
12
0
0
18 Jun 2025
A Robust Model-Based Approach for Continuous-Time Policy Evaluation with Unknown Lévy Process Dynamics
Qihao Ye
Xiaochuan Tian
Yuhua Zhu
95
1
0
02 Apr 2025
A Training-Free Conditional Diffusion Model for Learning Stochastic Dynamical Systems
Yanfang Liu
Yuán Chen
Dongbin Xiu
Guannan Zhang
DiffM
82
4
0
04 Oct 2024
Data-driven Effective Modeling of Multiscale Stochastic Dynamical Systems
Yuán Chen
Dongbin Xiu
77
0
0
27 Aug 2024
Tackling the Curse of Dimensionality in Fractional and Tempered Fractional PDEs with Physics-Informed Neural Networks
Zheyuan Hu
Kenji Kawaguchi
Zhongqiang Zhang
George Karniadakis
AI4CE
87
3
0
17 Jun 2024
Score-fPINN: Fractional Score-Based Physics-Informed Neural Networks for High-Dimensional Fokker-Planck-Levy Equations
Zheyuan Hu
Zhongqiang Zhang
George Karniadakis
Kenji Kawaguchi
88
0
0
17 Jun 2024
Neural McKean-Vlasov Processes: Distributional Dependence in Diffusion Processes
Haoming Yang
Ali Hasan
Yuting Ng
Vahid Tarokh
DiffM
74
6
0
15 Apr 2024
Weak Collocation Regression for Inferring Stochastic Dynamics with Lévy Noise
Liya Guo
Liwei Lu
Zhijun Zeng
Pipi Hu
Yi Zhu
96
1
0
13 Mar 2024
DynGMA: a robust approach for learning stochastic differential equations from data
Aiqing Zhu
Qianxiao Li
OOD
DiffM
87
4
0
22 Feb 2024
Score-Based Physics-Informed Neural Networks for High-Dimensional Fokker-Planck Equations
Zheyuan Hu
Zhongqiang Zhang
George Karniadakis
Kenji Kawaguchi
107
15
0
12 Feb 2024
Hutchinson Trace Estimation for High-Dimensional and High-Order Physics-Informed Neural Networks
Zheyuan Hu
Zekun Shi
George Karniadakis
Kenji Kawaguchi
AI4CE
PINN
134
27
0
22 Dec 2023
Inferring stochastic rates from heterogeneous snapshots of particle positions
Christopher E Miles
Scott A. McKinley
Fangyuan Ding
R. Lehoucq
30
6
0
08 Nov 2023
AI-Aristotle: A Physics-Informed framework for Systems Biology Gray-Box Identification
Nazanin Ahmadi Daryakenari
Mario De Florio
K. Shukla
George Karniadakis
97
34
0
29 Sep 2023
Physics-Informed Solution of The Stationary Fokker-Plank Equation for a Class of Nonlinear Dynamical Systems: An Evaluation Study
H. Alhussein
Mohammed Khasawneh
M. Daqaq
53
1
0
25 Sep 2023
Learning Stochastic Dynamical System via Flow Map Operator
Yuán Chen
D. Xiu
AI4CE
77
16
0
05 May 2023
Reservoir Computing with Error Correction: Long-term Behaviors of Stochastic Dynamical Systems
Cheng Fang
Yubin Lu
Ting Gao
Jinqiao Duan
43
4
0
01 May 2023
Maximum-likelihood Estimators in Physics-Informed Neural Networks for High-dimensional Inverse Problems
G. S. Gusmão
A. Medford
PINN
52
9
0
12 Apr 2023
Drift Identification for Lévy alpha-Stable Stochastic Systems
Harish S. Bhat
62
1
0
06 Dec 2022
Adaptive deep density approximation for fractional Fokker-Planck equations
Li Zeng
Xiaoliang Wan
Tao Zhou
61
5
0
26 Oct 2022
Weak Collocation Regression method: fast reveal hidden stochastic dynamics from high-dimensional aggregate data
Liwei Lu
Zhijun Zeng
Yan Jiang
Yi Zhu
Pipi Hu
70
4
0
06 Sep 2022
Revisiting PINNs: Generative Adversarial Physics-informed Neural Networks and Point-weighting Method
Wensheng Li
Chao Zhang
Chuncheng Wang
Hanting Guan
Dacheng Tao
DiffM
PINN
74
12
0
18 May 2022
An Optimal Control Method to Compute the Most Likely Transition Path for Stochastic Dynamical Systems with Jumps
Wei Wei
Ting Gao
Jinqiao Duan
Xiaoli Chen
20
13
0
31 Mar 2022
An end-to-end deep learning approach for extracting stochastic dynamical systems with
α
α
α
-stable Lévy noise
Cheng Fang
Yubin Lu
Ting Gao
Jinqiao Duan
87
16
0
31 Jan 2022
Temperature Field Inversion of Heat-Source Systems via Physics-Informed Neural Networks
Xu Liu
Wei Peng
Zhiqiang Gong
Weien Zhou
Wen Yao
51
58
0
18 Jan 2022
Solving time dependent Fokker-Planck equations via temporal normalizing flow
Xiaodong Feng
Li Zeng
Tao Zhou
AI4CE
79
25
0
28 Dec 2021
Nonparametric inference of stochastic differential equations based on the relative entropy rate
Min Dai
Jinqiao Duan
Jianyu Hu
Xiangjun Wang
48
2
0
09 Dec 2021
Neural network stochastic differential equation models with applications to financial data forecasting
Luxuan Yang
Ting Gao
Yubin Lu
Jinqiao Duan
Tao Liu
AI4TS
84
41
0
25 Nov 2021
Computing the Invariant Distribution of Randomly Perturbed Dynamical Systems Using Deep Learning
Bo Lin
Qianxiao Li
W. Ren
102
9
0
22 Oct 2021
Learning Mean-Field Equations from Particle Data Using WSINDy
Daniel Messenger
David M. Bortz
99
37
0
14 Oct 2021
Extracting stochastic dynamical systems with
α
α
α
-stable Lévy noise from data
Yang Li
Yubin Lu
Shengyuan Xu
Jinqiao Duan
58
15
0
30 Sep 2021
Extracting Stochastic Governing Laws by Nonlocal Kramers-Moyal Formulas
Yubin Lu
Yang Li
Jinqiao Duan
47
16
0
28 Aug 2021
Learning the temporal evolution of multivariate densities via normalizing flows
Yubin Lu
R. Maulik
Ting Gao
Felix Dietrich
Ioannis G. Kevrekidis
Jinqiao Duan
53
24
0
29 Jul 2021
Adaptive deep density approximation for Fokker-Planck equations
Keju Tang
Xiaoliang Wan
Qifeng Liao
93
40
0
20 Mar 2021
Towards a mathematical theory of trajectory inference
Hugo Lavenant
Stephen X. Zhang
Young-Heon Kim
Geoffrey Schiebinger
50
41
0
18 Feb 2021
Learning Thermodynamically Stable and Galilean Invariant Partial Differential Equations for Non-equilibrium Flows
Juntao Huang
Zhiting Ma
Y. Zhou
W. Yong
AI4CE
63
16
0
28 Sep 2020
1