ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.00142
  4. Cited By
Distance Encoding: Design Provably More Powerful Neural Networks for
  Graph Representation Learning

Distance Encoding: Design Provably More Powerful Neural Networks for Graph Representation Learning

31 August 2020
Pan Li
Yanbang Wang
Hongwei Wang
J. Leskovec
    GNN
ArXivPDFHTML

Papers citing "Distance Encoding: Design Provably More Powerful Neural Networks for Graph Representation Learning"

2 / 2 papers shown
Title
Weisfeiler and Leman Go Measurement Modeling: Probing the Validity of
  the WL Test
Weisfeiler and Leman Go Measurement Modeling: Probing the Validity of the WL Test
Arjun Subramonian
Adina Williams
Maximilian Nickel
Yizhou Sun
Levent Sagun
21
0
0
11 Jul 2023
Hierarchical Message-Passing Graph Neural Networks
Hierarchical Message-Passing Graph Neural Networks
Zhiqiang Zhong
Cheng-Te Li
Jun Pang
17
46
0
08 Sep 2020
1