Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.01098
Cited By
Privacy-Preserving Distributed Processing: Metrics, Bounds, and Algorithms
2 September 2020
Qiongxiu Li
Jaron Skovsted Gundersen
Richard Heusdens
M. G. Christensen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Privacy-Preserving Distributed Processing: Metrics, Bounds, and Algorithms"
8 / 8 papers shown
Title
Provable Privacy Advantages of Decentralized Federated Learning via Distributed Optimization
Wenrui Yu
Qiongxiu Li
Milan Lopuhaä-Zwakenberg
Mads Græsbøll Christensen
Richard Heusdens
FedML
40
4
0
12 Jul 2024
Distributed Harmonization: Federated Clustered Batch Effect Adjustment and Generalization
Hoang Bao
Yijiang Pang
Siqi Liang
Liang Zhan
Paul Thompson
Jiayu Zhou
FedML
48
1
0
23 May 2024
Topology-Dependent Privacy Bound For Decentralized Federated Learning
Qiongxiu Li
Wenrui Yu
Changlong Ji
Richard Heusdens
37
3
0
13 Dec 2023
Adaptive Differentially Quantized Subspace Perturbation (ADQSP): A Unified Framework for Privacy-Preserving Distributed Average Consensus
Qiongxiu Li
Jaron Skovsted Gundersen
Milan Lopuhaä-Zwakenberg
Richard Heusdens
28
11
0
13 Dec 2023
Privacy-Preserving Distributed Expectation Maximization for Gaussian Mixture Model using Subspace Perturbation
Qiongxiu Li
Jaron Skovsted Gundersen
K. Tjell
R. Wisniewski
M. G. Christensen
FedML
12
11
0
16 Sep 2022
Investigation of Alternative Measures for Mutual Information
Bulut Kuskonmaz
Jaron Skovsted Gundersen
R. Wisniewski
26
4
0
02 Feb 2022
Secure PAC Bayesian Regression via Real Shamir Secret Sharing
Jaron Skovsted Gundersen
Bulut Kuskonmaz
R. Wisniewski
41
1
0
23 Sep 2021
SoK: Differential Privacies
Damien Desfontaines
Balázs Pejó
44
122
0
04 Jun 2019
1