ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.01867
  4. Cited By
ESMFL: Efficient and Secure Models for Federated Learning

ESMFL: Efficient and Secure Models for Federated Learning

3 September 2020
Sheng Lin
Chenghong Wang
Hongjia Li
Jieren Deng
Yanzhi Wang
Caiwen Ding
    FedML
ArXivPDFHTML

Papers citing "ESMFL: Efficient and Secure Models for Federated Learning"

2 / 2 papers shown
Title
A Secure and Efficient Federated Learning Framework for NLP
A Secure and Efficient Federated Learning Framework for NLP
Jieren Deng
Chenghong Wang
Xianrui Meng
Yijue Wang
Ji Li
Sheng Lin
Shuo Han
Fei Miao
Sanguthevar Rajasekaran
Caiwen Ding
FedML
77
22
0
28 Jan 2022
Confidential Machine Learning Computation in Untrusted Environments: A
  Systems Security Perspective
Confidential Machine Learning Computation in Untrusted Environments: A Systems Security Perspective
Kha Dinh Duy
Taehyun Noh
Siwon Huh
Hojoon Lee
56
9
0
05 Nov 2021
1