Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.03947
Cited By
v1
v2
v3 (latest)
Covid-Transformer: Detecting COVID-19 Trending Topics on Twitter Using Universal Sentence Encoder
8 September 2020
M. Asgari-Chenaghlu
Narjes Nikzad Khasmakhi
Shervin Minaee
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Covid-Transformer: Detecting COVID-19 Trending Topics on Twitter Using Universal Sentence Encoder"
4 / 4 papers shown
Title
A Human Word Association based model for topic detection in social networks
Mehrdad Ranjbar-Khadivi
Shahin Akbarpour
M. Feizi-Derakhshi
B. Anari
104
5
0
30 Jan 2023
An Exploratory Study of Tweets about the SARS-CoV-2 Omicron Variant: Insights from Sentiment Analysis, Language Interpretation, Source Tracking, Type Classification, and Embedded URL Detection
Nirmalya Thakur
Chia Y. Han
64
38
0
20 Jul 2022
An Empirical Study on How Well Do COVID-19 Information Dashboards Service Users' Information Needs
Xinyan Li
Han Wang
Chunyang Chen
John C. Grundy
20
6
0
30 May 2022
COVID-19 Modeling: A Review
LongBing Cao
Qing Liu
96
46
0
16 Apr 2021
1