Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.04382
Cited By
Finite-Sample Guarantees for Wasserstein Distributionally Robust Optimization: Breaking the Curse of Dimensionality
9 September 2020
Rui Gao
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Finite-Sample Guarantees for Wasserstein Distributionally Robust Optimization: Breaking the Curse of Dimensionality"
12 / 12 papers shown
Title
Wasserstein Distributionally Robust Nonparametric Regression
Changyu Liu
Yuling Jiao
Junhui Wang
Jian Huang
OOD
31
0
0
12 May 2025
Universal generalization guarantees for Wasserstein distributionally robust models
Tam Le
Jérome Malick
OOD
45
2
0
28 Jan 2025
New Perspectives on Regularization and Computation in Optimal Transport-Based Distributionally Robust Optimization
Soroosh Shafieezadeh-Abadeh
Liviu Aolaritei
Florian Dorfler
Daniel Kuhn
54
20
0
31 Dec 2024
Evaluating Model Performance Under Worst-case Subpopulations
Mike Li
Hongseok Namkoong
Shangzhou Xia
37
17
0
01 Jul 2024
Nonlinear Distributionally Robust Optimization
Mohammed Rayyan Sheriff
Peyman Mohajerin Esfahani
32
2
0
05 Jun 2023
Learning Against Distributional Uncertainty: On the Trade-off Between Robustness and Specificity
Shixiong Wang
Haowei Wang
Xinke Li
Jean Honorio
OOD
65
1
0
31 Jan 2023
Instance-Dependent Generalization Bounds via Optimal Transport
Songyan Hou
Parnian Kassraie
Anastasis Kratsios
Andreas Krause
Jonas Rothfuss
22
6
0
02 Nov 2022
Sinkhorn Distributionally Robust Optimization
Jie Wang
Rui Gao
Yao Xie
40
35
0
24 Sep 2021
Robust Hypothesis Testing with Wasserstein Uncertainty Sets
Liyan Xie
Rui Gao
Yao Xie
OOD
33
9
0
29 May 2021
Reliable Off-policy Evaluation for Reinforcement Learning
Jie Wang
Rui Gao
H. Zha
OffRL
17
11
0
08 Nov 2020
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
136
1,198
0
16 Aug 2016
Sample Out-Of-Sample Inference Based on Wasserstein Distance
Jose H. Blanchet
Yang Kang
25
35
0
04 May 2016
1