ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.04800
  4. Cited By
Automatic selection of basis-adaptive sparse polynomial chaos expansions
  for engineering applications
v1v2v3 (latest)

Automatic selection of basis-adaptive sparse polynomial chaos expansions for engineering applications

10 September 2020
Nora Lüthen
S. Marelli
Bruno Sudret
ArXiv (abs)PDFHTML

Papers citing "Automatic selection of basis-adaptive sparse polynomial chaos expansions for engineering applications"

10 / 10 papers shown
Title
Bayesian full waveform inversion with sequential surrogate model refinement
Bayesian full waveform inversion with sequential surrogate model refinement
G. Meles
S. Marelli
N. Linde
86
1
0
06 May 2025
UQ state-dependent framework for seismic fragility assessment of
  industrial components
UQ state-dependent framework for seismic fragility assessment of industrial components
C. Nardin
S. Marelli
O. Bursi
B. Sudret
M. Broccardo
45
2
0
07 May 2024
Polynomial Chaos Expansions on Principal Geodesic Grassmannian
  Submanifolds for Surrogate Modeling and Uncertainty Quantification
Polynomial Chaos Expansions on Principal Geodesic Grassmannian Submanifolds for Surrogate Modeling and Uncertainty Quantification
Dimitris G. Giovanis
Dimitrios Loukrezis
Ioannis G. Kevrekidis
Michael D. Shields
128
5
0
30 Jan 2024
Reliability analysis for data-driven noisy models using active learning
Reliability analysis for data-driven noisy models using active learning
Anderson V. Pires
M. Moustapha
S. Marelli
Bruno Sudret
AI4CE
50
4
0
19 Jan 2024
A comprehensive framework for multi-fidelity surrogate modeling with
  noisy data: a gray-box perspective
A comprehensive framework for multi-fidelity surrogate modeling with noisy data: a gray-box perspective
Katerina Giannoukou
S. Marelli
Bruno Sudret
AI4CE
72
2
0
12 Jan 2024
Physics-Informed Polynomial Chaos Expansions
Physics-Informed Polynomial Chaos Expansions
Lukávs Novák
Himanshu Sharma
Michael D. Shields
92
22
0
04 Sep 2023
A spectral surrogate model for stochastic simulators computed from
  trajectory samples
A spectral surrogate model for stochastic simulators computed from trajectory samples
Nora Lüthen
S. Marelli
Bruno Sudret
63
22
0
12 Jul 2022
On efficient algorithms for computing near-best polynomial
  approximations to high-dimensional, Hilbert-valued functions from limited
  samples
On efficient algorithms for computing near-best polynomial approximations to high-dimensional, Hilbert-valued functions from limited samples
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
132
11
0
25 Mar 2022
Extreme learning machines for variance-based global sensitivity analysis
Extreme learning machines for variance-based global sensitivity analysis
John E. Darges
A. Alexanderian
P. Gremaud
110
2
0
14 Jan 2022
Global sensitivity analysis using derivative-based sparse Poincaré
  chaos expansions
Global sensitivity analysis using derivative-based sparse Poincaré chaos expansions
Nora Lüthen
O. Roustant
Fabrice Gamboa
Bertrand Iooss
S. Marelli
Bruno Sudret
164
5
0
01 Jul 2021
1