ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.05230
  4. Cited By
Accelerating Recommender Systems via Hardware "scale-in"

Accelerating Recommender Systems via Hardware "scale-in"

11 September 2020
S. Krishna
Ravi Krishna
    GNN
    LRM
ArXivPDFHTML

Papers citing "Accelerating Recommender Systems via Hardware "scale-in""

5 / 5 papers shown
Title
PICASSO: Unleashing the Potential of GPU-centric Training for
  Wide-and-deep Recommender Systems
PICASSO: Unleashing the Potential of GPU-centric Training for Wide-and-deep Recommender Systems
Yuanxing Zhang
Langshi Chen
Siran Yang
Man Yuan
Hui-juan Yi
...
Yong Li
Dingyang Zhang
Wei Lin
Lin Qu
Bo Zheng
27
32
0
11 Apr 2022
Large Graph Convolutional Network Training with GPU-Oriented Data
  Communication Architecture
Large Graph Convolutional Network Training with GPU-Oriented Data Communication Architecture
S. Min
Kun Wu
Sitao Huang
Mert Hidayetouglu
Jinjun Xiong
Eiman Ebrahimi
Deming Chen
Wen-mei W. Hwu
GNN
10
67
0
04 Mar 2021
Deep Learning Training in Facebook Data Centers: Design of Scale-up and
  Scale-out Systems
Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems
Maxim Naumov
John Kim
Dheevatsa Mudigere
Srinivas Sridharan
Xiaodong Wang
...
Krishnakumar Nair
Isabel Gao
Bor-Yiing Su
Jiyan Yang
M. Smelyanskiy
GNN
41
83
0
20 Mar 2020
Distributed Hierarchical GPU Parameter Server for Massive Scale Deep
  Learning Ads Systems
Distributed Hierarchical GPU Parameter Server for Massive Scale Deep Learning Ads Systems
Weijie Zhao
Deping Xie
Ronglai Jia
Yulei Qian
Rui Ding
Mingming Sun
P. Li
MoE
57
150
0
12 Mar 2020
RecNMP: Accelerating Personalized Recommendation with Near-Memory
  Processing
RecNMP: Accelerating Personalized Recommendation with Near-Memory Processing
Liu Ke
Udit Gupta
Carole-Jean Wu
B. Cho
Mark Hempstead
...
Dheevatsa Mudigere
Maxim Naumov
Martin D. Schatz
M. Smelyanskiy
Xiaodong Wang
41
212
0
30 Dec 2019
1