ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.05683
  4. Cited By
MACE: A Flexible Framework for Membership Privacy Estimation in
  Generative Models

MACE: A Flexible Framework for Membership Privacy Estimation in Generative Models

11 September 2020
Yixi Xu
S. Mukherjee
Xiyang Liu
Shruti Tople
Rahul Dodhia
J. L. Ferres
    MIACV
ArXivPDFHTML

Papers citing "MACE: A Flexible Framework for Membership Privacy Estimation in Generative Models"

5 / 5 papers shown
Title
SoK: Privacy-Preserving Data Synthesis
SoK: Privacy-Preserving Data Synthesis
Yuzheng Hu
Fan Wu
Q. Li
Yunhui Long
Gonzalo Munilla Garrido
Chang Ge
Bolin Ding
David A. Forsyth
Bo-wen Li
D. Song
52
25
0
05 Jul 2023
Machine Learning for Synthetic Data Generation: A Review
Machine Learning for Synthetic Data Generation: A Review
Ying-Cheng Lu
Minjie Shen
Huazheng Wang
Xiao Wang
Capucine Van Rechem
Tianfan Fu
Wenqi Wei
SyDa
31
138
0
08 Feb 2023
LTU Attacker for Membership Inference
LTU Attacker for Membership Inference
Joseph Pedersen
Rafael Munoz-Gómez
Jiangnan Huang
Haozhe Sun
Wei-Wei Tu
Isabelle M Guyon
27
1
0
04 Feb 2022
SHAPr: An Efficient and Versatile Membership Privacy Risk Metric for
  Machine Learning
SHAPr: An Efficient and Versatile Membership Privacy Risk Metric for Machine Learning
Vasisht Duddu
S. Szyller
Nadarajah Asokan
11
12
0
04 Dec 2021
Reducing bias and increasing utility by federated generative modeling of
  medical images using a centralized adversary
Reducing bias and increasing utility by federated generative modeling of medical images using a centralized adversary
Jean-Francois Rajotte
S. Mukherjee
Caleb Robinson
Anthony Ortiz
Christopher West
J. L. Ferres
R. Ng
FedML
MedIm
122
40
0
18 Jan 2021
1