ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.06402
11
17

Time-Aware Evidence Ranking for Fact-Checking

10 September 2020
Liesbeth Allein
Isabelle Augenstein
Marie-Francine Moens
    HILM
ArXivPDFHTML
Abstract

Truth can vary over time. Fact-checking decisions on claim veracity should therefore take into account temporal information of both the claim and supporting or refuting evidence. In this work, we investigate the hypothesis that the timestamp of a Web page is crucial to how it should be ranked for a given claim. We delineate four temporal ranking methods that constrain evidence ranking differently and simulate hypothesis-specific evidence rankings given the evidence timestamps as gold standard. Evidence ranking in three fact-checking models is ultimately optimized using a learning-to-rank loss function. Our study reveals that time-aware evidence ranking not only surpasses relevance assumptions based purely on semantic similarity or position in a search results list, but also improves veracity predictions of time-sensitive claims in particular.

View on arXiv
Comments on this paper