ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.07002
  4. Cited By
Asymptotic analysis of maximum likelihood estimation of covariance
  parameters for Gaussian processes: an introduction with proofs

Asymptotic analysis of maximum likelihood estimation of covariance parameters for Gaussian processes: an introduction with proofs

15 September 2020
François Bachoc
ArXiv (abs)PDFHTML

Papers citing "Asymptotic analysis of maximum likelihood estimation of covariance parameters for Gaussian processes: an introduction with proofs"

4 / 4 papers shown
Title
Asymptotic analysis for covariance parameter estimation of Gaussian
  processes with functional inputs
Asymptotic analysis for covariance parameter estimation of Gaussian processes with functional inputs
Lucas Reding
A. F. López-Lopera
François Bachoc
68
1
0
26 Apr 2024
HyperBO+: Pre-training a universal prior for Bayesian optimization with
  hierarchical Gaussian processes
HyperBO+: Pre-training a universal prior for Bayesian optimization with hierarchical Gaussian processes
Z. Fan
Xinran Han
Zehao Wang
91
4
0
20 Dec 2022
Bounds in $L^1$ Wasserstein distance on the normal approximation of
  general M-estimators
Bounds in L1L^1L1 Wasserstein distance on the normal approximation of general M-estimators
François Bachoc
M. Fathi
41
0
0
18 Nov 2021
Pre-trained Gaussian processes for Bayesian optimization
Pre-trained Gaussian processes for Bayesian optimization
Zehao Wang
George E. Dahl
Kevin Swersky
Chansoo Lee
Zachary Nado
Justin Gilmer
Jasper Snoek
Zoubin Ghahramani
151
46
0
16 Sep 2021
1