Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.07368
Cited By
Evaluating representations by the complexity of learning low-loss predictors
15 September 2020
William F. Whitney
M. Song
David Brandfonbrener
Jaan Altosaar
Kyunghyun Cho
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Evaluating representations by the complexity of learning low-loss predictors"
11 / 11 papers shown
Title
Evaluating Representations with Readout Model Switching
Yazhe Li
J. Bornschein
Marcus Hutter
22
0
0
19 Feb 2023
Sequential Learning Of Neural Networks for Prequential MDL
J. Bornschein
Yazhe Li
Marcus Hutter
AI4TS
20
6
0
14 Oct 2022
SynBench: Task-Agnostic Benchmarking of Pretrained Representations using Synthetic Data
Ching-Yun Ko
Pin-Yu Chen
Jeet Mohapatra
Payel Das
Lucani E. Daniel
19
3
0
06 Oct 2022
FedAvg with Fine Tuning: Local Updates Lead to Representation Learning
Liam Collins
Hamed Hassani
Aryan Mokhtari
Sanjay Shakkottai
FedML
24
75
0
27 May 2022
Socially Supervised Representation Learning: the Role of Subjectivity in Learning Efficient Representations
Julius Taylor
Eleni Nisioti
Clément Moulin-Frier
14
0
0
20 Sep 2021
Exploring the Latent Space of Autoencoders with Interventional Assays
Felix Leeb
Stefan Bauer
M. Besserve
Bernhard Schölkopf
DRL
41
17
0
30 Jun 2021
A Closer Look at How Fine-tuning Changes BERT
Yichu Zhou
Vivek Srikumar
24
63
0
27 Jun 2021
DirectProbe: Studying Representations without Classifiers
Yichu Zhou
Vivek Srikumar
27
27
0
13 Apr 2021
When Do You Need Billions of Words of Pretraining Data?
Yian Zhang
Alex Warstadt
Haau-Sing Li
Samuel R. Bowman
21
136
0
10 Nov 2020
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
226
4,460
0
23 Jan 2020
What you can cram into a single vector: Probing sentence embeddings for linguistic properties
Alexis Conneau
Germán Kruszewski
Guillaume Lample
Loïc Barrault
Marco Baroni
199
882
0
03 May 2018
1