ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.07769
  4. Cited By
TadGAN: Time Series Anomaly Detection Using Generative Adversarial
  Networks

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks

16 September 2020
Alexander Geiger
Dongyu Liu
Sarah Alnegheimish
Alfredo Cuesta-Infante
K. Veeramachaneni
    AI4TS
ArXivPDFHTML

Papers citing "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

9 / 9 papers shown
Title
M$^2$AD: Multi-Sensor Multi-System Anomaly Detection through Global Scoring and Calibrated Thresholding
M2^22AD: Multi-Sensor Multi-System Anomaly Detection through Global Scoring and Calibrated Thresholding
Sarah Alnegheimish
Zelin He
Matthew Reimherr
Akash Chandrayan
Abhinav Pradhan
Luca DÁngelo
24
0
0
21 Apr 2025
Seamless Monitoring of Stress Levels Leveraging a Universal Model for Time Sequences
Seamless Monitoring of Stress Levels Leveraging a Universal Model for Time Sequences
Davide Gabrielli
Bardh Prenkaj
Paola Velardi
21
0
0
04 Jul 2024
Generative Adversarial Network with Soft-Dynamic Time Warping and
  Parallel Reconstruction for Energy Time Series Anomaly Detection
Generative Adversarial Network with Soft-Dynamic Time Warping and Parallel Reconstruction for Energy Time Series Anomaly Detection
Hardik Prabhu
J. Valadi
P. Arjunan
AI4TS
22
1
0
22 Feb 2024
MadSGM: Multivariate Anomaly Detection with Score-based Generative
  Models
MadSGM: Multivariate Anomaly Detection with Score-based Generative Models
Haksoo Lim
Sewon Park
Minjung Kim
Jaehoon Lee
S. Lim
Noseong Park
19
3
0
29 Aug 2023
ActorLens: Visual Analytics for High-level Actor Identification in MOBA
  Games
ActorLens: Visual Analytics for High-level Actor Identification in MOBA Games
Zhihua Jin
Gaoping Huang
Zixin Chen
Shiyi Liu
Yang Chao
Zhenchuan Yang
Quan Li
Huamin Qu
10
2
0
19 Jul 2023
Interpretable Anomaly Detection via Discrete Optimization
Interpretable Anomaly Detection via Discrete Optimization
Simon Lutz
Florian Wittbold
Simon Dierl
Benedikt Böing
F. Howar
Barbara König
Emmanuel Müller
Daniel Neider
AAML
21
0
0
24 Mar 2023
Navigating the Metric Maze: A Taxonomy of Evaluation Metrics for Anomaly
  Detection in Time Series
Navigating the Metric Maze: A Taxonomy of Evaluation Metrics for Anomaly Detection in Time Series
Sondre Sørbø
M. Ruocco
AI4TS
19
18
0
02 Mar 2023
Are we certain it's anomalous?
Are we certain it's anomalous?
Alessandro Flaborea
Bardh Prenkaj
Bharti Munjal
Marco Aurelio Sterpa
Dario Aragona
L. Podo
Fabio Galasso
11
8
0
16 Nov 2022
DEGAN: Time Series Anomaly Detection using Generative Adversarial
  Network Discriminators and Density Estimation
DEGAN: Time Series Anomaly Detection using Generative Adversarial Network Discriminators and Density Estimation
Yueyang Gu
F. Jazizadeh
AI4TS
12
0
0
05 Oct 2022
1