ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.08372
  4. Cited By
A Principle of Least Action for the Training of Neural Networks

A Principle of Least Action for the Training of Neural Networks

17 September 2020
Skander Karkar
Ibrahhim Ayed
Emmanuel de Bézenac
Patrick Gallinari
    AI4CE
ArXivPDFHTML

Papers citing "A Principle of Least Action for the Training of Neural Networks"

5 / 5 papers shown
Title
Block-wise Training of Residual Networks via the Minimizing Movement
  Scheme
Block-wise Training of Residual Networks via the Minimizing Movement Scheme
Skander Karkar
Ibrahim Ayed
Emmanuel de Bézenac
Patrick Gallinari
27
1
0
03 Oct 2022
Turning Normalizing Flows into Monge Maps with Geodesic Gaussian
  Preserving Flows
Turning Normalizing Flows into Monge Maps with Geodesic Gaussian Preserving Flows
G. Morel
Lucas Drumetz
Simon Benaïchouche
Nicolas Courty
F. Rousseau
OT
28
6
0
22 Sep 2022
Mapping conditional distributions for domain adaptation under
  generalized target shift
Mapping conditional distributions for domain adaptation under generalized target shift
Matthieu Kirchmeyer
A. Rakotomamonjy
Emmanuel de Bézenac
Patrick Gallinari
OOD
12
22
0
26 Oct 2021
Adaptable Hamiltonian neural networks
Adaptable Hamiltonian neural networks
Chen-Di Han
Bryan Glaz
Mulugeta Haile
Y. Lai
AI4TS
14
25
0
25 Feb 2021
Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Z. Tu
Kaiming He
297
10,216
0
16 Nov 2016
1