ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.08727
  4. Cited By
Recurrent Graph Tensor Networks: A Low-Complexity Framework for
  Modelling High-Dimensional Multi-Way Sequence

Recurrent Graph Tensor Networks: A Low-Complexity Framework for Modelling High-Dimensional Multi-Way Sequence

18 September 2020
Y. Xu
Danilo P. Mandic
    GNN
ArXivPDFHTML

Papers citing "Recurrent Graph Tensor Networks: A Low-Complexity Framework for Modelling High-Dimensional Multi-Way Sequence"

2 / 2 papers shown
Title
Graph-Regularized Tensor Regression: A Domain-Aware Framework for
  Interpretable Multi-Way Financial Modelling
Graph-Regularized Tensor Regression: A Domain-Aware Framework for Interpretable Multi-Way Financial Modelling
Y. Xu
Kriton Konstantinidis
Danilo P. Mandic
8
1
0
26 Oct 2022
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
236
3,234
0
24 Nov 2016
1