Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2009.09943
Cited By
NeuroDiff: Scalable Differential Verification of Neural Networks using Fine-Grained Approximation
21 September 2020
Brandon Paulsen
Jingbo Wang
Jiawei Wang
Chao Wang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"NeuroDiff: Scalable Differential Verification of Neural Networks using Fine-Grained Approximation"
33 / 33 papers shown
Title
Guarding the Privacy of Label-Only Access to Neural Network Classifiers via iDP Verification
Anan Kabaha
Dana Drachsler-Cohen
AAML
55
0
0
23 Feb 2025
Revisiting Differential Verification: Equivalence Verification with Confidence
Samuel Teuber
Philipp Kern
Marvin Janzen
Bernhard Beckert
51
0
0
26 Oct 2024
ReluDiff: Differential Verification of Deep Neural Networks
Brandon Paulsen
Jingbo Wang
Chao Wang
90
53
0
10 Jan 2020
Simplifying Neural Networks using Formal Verification
S. Gokulanathan
Alexander Feldsher
Adi Malca
Clark W. Barrett
Guy Katz
48
4
0
25 Oct 2019
Quantitative Verification of Neural Networks And its Security Applications
Teodora Baluta
Shiqi Shen
Shweta Shinde
Kuldeep S. Meel
P. Saxena
AAML
29
105
0
25 Jun 2019
DifFuzz: Differential Fuzzing for Side-Channel Analysis
Shirin Nilizadeh
Yannic Noller
C. Păsăreanu
20
96
0
16 Nov 2018
Efficient Neural Network Robustness Certification with General Activation Functions
Huan Zhang
Tsui-Wei Weng
Pin-Yu Chen
Cho-Jui Hsieh
Luca Daniel
AAML
35
751
0
02 Nov 2018
Towards Understanding Learning Representations: To What Extent Do Different Neural Networks Learn the Same Representation
Liwei Wang
Lunjia Hu
Jiayuan Gu
Y. Wu
Zhiqiang Hu
Kun He
John E. Hopcroft
SSL
13
113
0
28 Oct 2018
Deep Neural Network Compression for Aircraft Collision Avoidance Systems
Kyle D. Julian
Mykel J. Kochenderfer
Michael P. Owen
28
170
0
09 Oct 2018
Efficient Formal Safety Analysis of Neural Networks
Shiqi Wang
Kexin Pei
Justin Whitehouse
Junfeng Yang
Suman Jana
AAML
30
400
0
19 Sep 2018
TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing
Augustus Odena
Ian Goodfellow
AAML
35
321
0
28 Jul 2018
Reachability Analysis of Deep Neural Networks with Provable Guarantees
Wenjie Ruan
Xiaowei Huang
Marta Kwiatkowska
AAML
49
270
0
06 May 2018
Concolic Testing for Deep Neural Networks
Youcheng Sun
Min Wu
Wenjie Ruan
Xiaowei Huang
Marta Kwiatkowska
Daniel Kroening
36
334
0
30 Apr 2018
Formal Security Analysis of Neural Networks using Symbolic Intervals
Shiqi Wang
Kexin Pei
Justin Whitehouse
Junfeng Yang
Suman Jana
AAML
44
475
0
28 Apr 2018
Towards Fast Computation of Certified Robustness for ReLU Networks
Tsui-Wei Weng
Huan Zhang
Hongge Chen
Zhao Song
Cho-Jui Hsieh
Duane S. Boning
Inderjit S. Dhillon
Luca Daniel
AAML
62
688
0
25 Apr 2018
DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems
Lei Ma
Felix Juefei Xu
Fuyuan Zhang
Jiyuan Sun
Minhui Xue
...
Ting Su
Li Li
Yang Liu
Jianjun Zhao
Yadong Wang
ELM
48
620
0
20 Mar 2018
A Dual Approach to Scalable Verification of Deep Networks
Krishnamurthy Dvijotham
Dvijotham
Robert Stanforth
Sven Gowal
Timothy A. Mann
Pushmeet Kohli
32
395
0
17 Mar 2018
Certified Defenses against Adversarial Examples
Aditi Raghunathan
Jacob Steinhardt
Percy Liang
AAML
69
967
0
29 Jan 2018
Provable defenses against adversarial examples via the convex outer adversarial polytope
Eric Wong
J. Zico Kolter
AAML
69
1,495
0
02 Nov 2017
DeepTest: Automated Testing of Deep-Neural-Network-driven Autonomous Cars
Yuchi Tian
Kexin Pei
Suman Jana
Baishakhi Ray
AAML
49
1,353
0
28 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
161
11,962
0
19 Jun 2017
DeepXplore: Automated Whitebox Testing of Deep Learning Systems
Kexin Pei
Yinzhi Cao
Junfeng Yang
Suman Jana
AAML
59
1,357
0
18 May 2017
Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks
Rüdiger Ehlers
49
622
0
03 May 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
268
1,849
0
03 Feb 2017
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
196
935
0
21 Oct 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
133
8,497
0
16 Aug 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
463
5,868
0
08 Jul 2016
Measuring Neural Net Robustness with Constraints
Osbert Bastani
Yani Andrew Ioannou
Leonidas Lampropoulos
Dimitrios Vytiniotis
A. Nori
A. Criminisi
AAML
38
423
0
24 May 2016
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
81
4,878
0
14 Nov 2015
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
121
8,793
0
01 Oct 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
95
18,922
0
20 Dec 2014
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
107
3,261
0
05 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
45
14,831
1
21 Dec 2013
1