ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.10395
  4. Cited By
Mixed-Projection Conic Optimization: A New Paradigm for Modeling Rank
  Constraints
v1v2 (latest)

Mixed-Projection Conic Optimization: A New Paradigm for Modeling Rank Constraints

22 September 2020
Dimitris Bertsimas
Ryan Cory-Wright
J. Pauphilet
ArXiv (abs)PDFHTML

Papers citing "Mixed-Projection Conic Optimization: A New Paradigm for Modeling Rank Constraints"

4 / 4 papers shown
Title
Improved Approximation Algorithms for Low-Rank Problems Using Semidefinite Optimization
Improved Approximation Algorithms for Low-Rank Problems Using Semidefinite Optimization
Ryan Cory-Wright
J. Pauphilet
48
0
0
06 Jan 2025
Sparse PCA With Multiple Components
Sparse PCA With Multiple Components
Ryan Cory-Wright
J. Pauphilet
225
2
0
29 Sep 2022
A new perspective on low-rank optimization
A new perspective on low-rank optimization
Dimitris Bertsimas
Ryan Cory-Wright
J. Pauphilet
67
15
0
12 May 2021
Ideal formulations for constrained convex optimization problems with
  indicator variables
Ideal formulations for constrained convex optimization problems with indicator variables
Linchuan Wei
A. Gómez
Simge Küçükyavuz
80
33
0
30 Jun 2020
1