ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.11839
  4. Cited By
A Gradient Flow Framework For Analyzing Network Pruning

A Gradient Flow Framework For Analyzing Network Pruning

24 September 2020
Ekdeep Singh Lubana
Robert P. Dick
ArXivPDFHTML

Papers citing "A Gradient Flow Framework For Analyzing Network Pruning"

8 / 8 papers shown
Title
Neuroplasticity in Artificial Intelligence -- An Overview and Inspirations on Drop In & Out Learning
Neuroplasticity in Artificial Intelligence -- An Overview and Inspirations on Drop In & Out Learning
Yupei Li
M. Milling
Björn Schuller
AI4CE
107
0
0
27 Mar 2025
Straightforward Layer-wise Pruning for More Efficient Visual Adaptation
Straightforward Layer-wise Pruning for More Efficient Visual Adaptation
Ruizi Han
Jinglei Tang
45
1
0
19 Jul 2024
Always-Sparse Training by Growing Connections with Guided Stochastic Exploration
Always-Sparse Training by Growing Connections with Guided Stochastic Exploration
Mike Heddes
Narayan Srinivasa
T. Givargis
Alexandru Nicolau
91
0
0
12 Jan 2024
HomoDistil: Homotopic Task-Agnostic Distillation of Pre-trained
  Transformers
HomoDistil: Homotopic Task-Agnostic Distillation of Pre-trained Transformers
Chen Liang
Haoming Jiang
Zheng Li
Xianfeng Tang
Bin Yin
Tuo Zhao
VLM
24
24
0
19 Feb 2023
Zeroth-Order Topological Insights into Iterative Magnitude Pruning
Zeroth-Order Topological Insights into Iterative Magnitude Pruning
Aishwarya H. Balwani
J. Krzyston
24
2
0
14 Jun 2022
PAC-Net: A Model Pruning Approach to Inductive Transfer Learning
PAC-Net: A Model Pruning Approach to Inductive Transfer Learning
Sanghoon Myung
I. Huh
Wonik Jang
Jae Myung Choe
Jisu Ryu
Daesin Kim
Kee-Eung Kim
C. Jeong
22
13
0
12 Jun 2022
Rare Gems: Finding Lottery Tickets at Initialization
Rare Gems: Finding Lottery Tickets at Initialization
Kartik K. Sreenivasan
Jy-yong Sohn
Liu Yang
Matthew Grinde
Alliot Nagle
Hongyi Wang
Eric P. Xing
Kangwook Lee
Dimitris Papailiopoulos
16
42
0
24 Feb 2022
Decomposable-Net: Scalable Low-Rank Compression for Neural Networks
Decomposable-Net: Scalable Low-Rank Compression for Neural Networks
A. Yaguchi
Taiji Suzuki
Shuhei Nitta
Y. Sakata
A. Tanizawa
17
9
0
29 Oct 2019
1