ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.13586
20
31

Apollo: An Adaptive Parameter-wise Diagonal Quasi-Newton Method for Nonconvex Stochastic Optimization

28 September 2020
Xuezhe Ma
    ODL
ArXivPDFHTML
Abstract

In this paper, we introduce Apollo, a quasi-Newton method for nonconvex stochastic optimization, which dynamically incorporates the curvature of the loss function by approximating the Hessian via a diagonal matrix. Importantly, the update and storage of the diagonal approximation of Hessian is as efficient as adaptive first-order optimization methods with linear complexity for both time and memory. To handle nonconvexity, we replace the Hessian with its rectified absolute value, which is guaranteed to be positive-definite. Experiments on three tasks of vision and language show that Apollo achieves significant improvements over other stochastic optimization methods, including SGD and variants of Adam, in term of both convergence speed and generalization performance. The implementation of the algorithm is available at https://github.com/XuezheMax/apollo.

View on arXiv
Comments on this paper