ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.14148
  4. Cited By
Unbalanced Sobolev Descent

Unbalanced Sobolev Descent

29 September 2020
Youssef Mroueh
Mattia Rigotti
ArXiv (abs)PDFHTMLGithub (7★)

Papers citing "Unbalanced Sobolev Descent"

10 / 10 papers shown
Title
Scalable Sobolev IPM for Probability Measures on a Graph
Scalable Sobolev IPM for Probability Measures on a Graph
Tam Le
Truyen V. Nguyen
H. Hino
Kenji Fukumizu
96
0
0
02 Feb 2025
Inclusive KL Minimization: A Wasserstein-Fisher-Rao Gradient Flow
  Perspective
Inclusive KL Minimization: A Wasserstein-Fisher-Rao Gradient Flow Perspective
Jia-Jie Zhu
157
1
0
31 Oct 2024
Neural Sinkhorn Gradient Flow
Neural Sinkhorn Gradient Flow
Huminhao Zhu
Fangyikang Wang
Chao Zhang
Han Zhao
Hui Qian
72
8
0
25 Jan 2024
GAD-PVI: A General Accelerated Dynamic-Weight Particle-Based Variational
  Inference Framework
GAD-PVI: A General Accelerated Dynamic-Weight Particle-Based Variational Inference Framework
Fangyikang Wang
Huminhao Zhu
Chao Zhang
Han Zhao
Hui Qian
71
8
0
27 Dec 2023
GANs Settle Scores!
GANs Settle Scores!
Siddarth Asokan
Nishanth Shetty
Aadithya Srikanth
C. Seelamantula
79
0
0
02 Jun 2023
Data Interpolants -- That's What Discriminators in Higher-order
  Gradient-regularized GANs Are
Data Interpolants -- That's What Discriminators in Higher-order Gradient-regularized GANs Are
Siddarth Asokan
C. Seelamantula
74
4
0
01 Jun 2023
GenPhys: From Physical Processes to Generative Models
GenPhys: From Physical Processes to Generative Models
Ziming Liu
Di Luo
Yilun Xu
Tommi Jaakkola
M. Tegmark
AI4CE
66
16
0
05 Apr 2023
DPVI: A Dynamic-Weight Particle-Based Variational Inference Framework
DPVI: A Dynamic-Weight Particle-Based Variational Inference Framework
Chao Zhang
Zhijian Li
Hui Qian
Xin Du
71
10
0
02 Dec 2021
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint
  Support
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support
Pierre Glaser
Michael Arbel
Arthur Gretton
131
40
0
16 Jun 2021
Optimizing Functionals on the Space of Probabilities with Input Convex
  Neural Networks
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
105
57
0
01 Jun 2021
1