ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.14180
  4. Cited By
Learning to Play against Any Mixture of Opponents

Learning to Play against Any Mixture of Opponents

29 September 2020
Max O. Smith
Thomas W. Anthony
Yongzhao Wang
Michael P. Wellman
    OffRL
ArXivPDFHTML

Papers citing "Learning to Play against Any Mixture of Opponents"

4 / 4 papers shown
Title
NeuPL: Neural Population Learning
NeuPL: Neural Population Learning
Siqi Liu
Luke Marris
Daniel Hennes
J. Merel
N. Heess
T. Graepel
30
17
0
15 Feb 2022
A Game-Theoretic Approach for Improving Generalization Ability of TSP
  Solvers
A Game-Theoretic Approach for Improving Generalization Ability of TSP Solvers
Chenguang Wang
Yaodong Yang
Oliver Slumbers
Congying Han
Tiande Guo
Haifeng Zhang
Jun Wang
19
17
0
28 Oct 2021
MAVEN: Multi-Agent Variational Exploration
MAVEN: Multi-Agent Variational Exploration
Anuj Mahajan
Tabish Rashid
Mikayel Samvelyan
Shimon Whiteson
DRL
135
355
0
16 Oct 2019
Stabilising Experience Replay for Deep Multi-Agent Reinforcement
  Learning
Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning
Jakob N. Foerster
Nantas Nardelli
Gregory Farquhar
Triantafyllos Afouras
Philip H. S. Torr
Pushmeet Kohli
Shimon Whiteson
OffRL
111
595
0
28 Feb 2017
1