ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.14286
  4. Cited By
Benign overfitting in ridge regression

Benign overfitting in ridge regression

29 September 2020
Alexander Tsigler
Peter L. Bartlett
ArXivPDFHTML

Papers citing "Benign overfitting in ridge regression"

29 / 29 papers shown
Title
Comparing regularisation paths of (conjugate) gradient estimators in ridge regression
Laura Hucker
Markus Reiß
Thomas Stark
33
1
0
07 Mar 2025
High-dimensional Analysis of Knowledge Distillation: Weak-to-Strong Generalization and Scaling Laws
High-dimensional Analysis of Knowledge Distillation: Weak-to-Strong Generalization and Scaling Laws
M. E. Ildiz
Halil Alperen Gozeten
Ege Onur Taga
Marco Mondelli
Samet Oymak
54
2
0
24 Oct 2024
Overfitting Behaviour of Gaussian Kernel Ridgeless Regression: Varying
  Bandwidth or Dimensionality
Overfitting Behaviour of Gaussian Kernel Ridgeless Regression: Varying Bandwidth or Dimensionality
Marko Medvedev
Gal Vardi
Nathan Srebro
62
3
0
05 Sep 2024
Triple/Debiased Lasso for Statistical Inference of Conditional Average
  Treatment Effects
Triple/Debiased Lasso for Statistical Inference of Conditional Average Treatment Effects
Masahiro Kato
CML
37
1
0
05 Mar 2024
Characterizing Overfitting in Kernel Ridgeless Regression Through the
  Eigenspectrum
Characterizing Overfitting in Kernel Ridgeless Regression Through the Eigenspectrum
Tin Sum Cheng
Aurélien Lucchi
Anastasis Kratsios
David Belius
34
7
0
02 Feb 2024
The Interpolating Information Criterion for Overparameterized Models
The Interpolating Information Criterion for Overparameterized Models
Liam Hodgkinson
Christopher van der Heide
Roberto Salomone
Fred Roosta
Michael W. Mahoney
20
7
0
15 Jul 2023
High-dimensional Contextual Bandit Problem without Sparsity
High-dimensional Contextual Bandit Problem without Sparsity
Junpei Komiyama
Masaaki Imaizumi
27
0
0
19 Jun 2023
Bayesian Analysis for Over-parameterized Linear Model via Effective Spectra
Bayesian Analysis for Over-parameterized Linear Model via Effective Spectra
Tomoya Wakayama
Masaaki Imaizumi
51
1
0
25 May 2023
Implicit Regularization Leads to Benign Overfitting for Sparse Linear
  Regression
Implicit Regularization Leads to Benign Overfitting for Sparse Linear Regression
Mo Zhou
Rong Ge
27
2
0
01 Feb 2023
A Simple Algorithm For Scaling Up Kernel Methods
A Simple Algorithm For Scaling Up Kernel Methods
Tengyu Xu
Bryan T. Kelly
Semyon Malamud
11
0
0
26 Jan 2023
Strong inductive biases provably prevent harmless interpolation
Strong inductive biases provably prevent harmless interpolation
Michael Aerni
Marco Milanta
Konstantin Donhauser
Fanny Yang
30
9
0
18 Jan 2023
Symphony in the Latent Space: Provably Integrating High-dimensional
  Techniques with Non-linear Machine Learning Models
Symphony in the Latent Space: Provably Integrating High-dimensional Techniques with Non-linear Machine Learning Models
Qiong Wu
Jian Li
Zhenming Liu
Yanhua Li
Mihai Cucuringu
26
4
0
01 Dec 2022
A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized
  Linear Models
A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized Linear Models
Lijia Zhou
Frederic Koehler
Pragya Sur
Danica J. Sutherland
Nathan Srebro
83
9
0
21 Oct 2022
Deep Linear Networks can Benignly Overfit when Shallow Ones Do
Deep Linear Networks can Benignly Overfit when Shallow Ones Do
Niladri S. Chatterji
Philip M. Long
17
8
0
19 Sep 2022
Membership Inference Attacks via Adversarial Examples
Membership Inference Attacks via Adversarial Examples
Hamid Jalalzai
Elie Kadoche
Rémi Leluc
Vincent Plassier
AAML
FedML
MIACV
29
7
0
27 Jul 2022
Benign, Tempered, or Catastrophic: A Taxonomy of Overfitting
Benign, Tempered, or Catastrophic: A Taxonomy of Overfitting
Neil Rohit Mallinar
James B. Simon
Amirhesam Abedsoltan
Parthe Pandit
M. Belkin
Preetum Nakkiran
24
37
0
14 Jul 2022
Target alignment in truncated kernel ridge regression
Target alignment in truncated kernel ridge regression
Arash A. Amini
R. Baumgartner
Dai Feng
9
3
0
28 Jun 2022
Provable Generalization of Overparameterized Meta-learning Trained with
  SGD
Provable Generalization of Overparameterized Meta-learning Trained with SGD
Yu Huang
Yingbin Liang
Longbo Huang
MLT
24
8
0
18 Jun 2022
Benign Overfitting in Time Series Linear Models with Over-Parameterization
Benign Overfitting in Time Series Linear Models with Over-Parameterization
Shogo H. Nakakita
Masaaki Imaizumi
AI4TS
19
5
0
18 Apr 2022
HARFE: Hard-Ridge Random Feature Expansion
HARFE: Hard-Ridge Random Feature Expansion
Esha Saha
Hayden Schaeffer
Giang Tran
38
14
0
06 Feb 2022
The Implicit Bias of Benign Overfitting
The Implicit Bias of Benign Overfitting
Ohad Shamir
99
35
0
27 Jan 2022
Benign Overfitting in Adversarially Robust Linear Classification
Benign Overfitting in Adversarially Robust Linear Classification
Jinghui Chen
Yuan Cao
Quanquan Gu
AAML
SILM
28
10
0
31 Dec 2021
Harmless interpolation in regression and classification with structured
  features
Harmless interpolation in regression and classification with structured features
Andrew D. McRae
Santhosh Karnik
Mark A. Davenport
Vidya Muthukumar
98
11
0
09 Nov 2021
Conditioning of Random Feature Matrices: Double Descent and
  Generalization Error
Conditioning of Random Feature Matrices: Double Descent and Generalization Error
Zhijun Chen
Hayden Schaeffer
35
12
0
21 Oct 2021
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of
  Overparameterized Machine Learning
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Yehuda Dar
Vidya Muthukumar
Richard G. Baraniuk
29
71
0
06 Sep 2021
A Theoretical Analysis of Fine-tuning with Linear Teachers
A Theoretical Analysis of Fine-tuning with Linear Teachers
Gal Shachaf
Alon Brutzkus
Amir Globerson
26
17
0
04 Jul 2021
Uniform Convergence of Interpolators: Gaussian Width, Norm Bounds, and
  Benign Overfitting
Uniform Convergence of Interpolators: Gaussian Width, Norm Bounds, and Benign Overfitting
Frederic Koehler
Lijia Zhou
Danica J. Sutherland
Nathan Srebro
24
55
0
17 Jun 2021
Learning with invariances in random features and kernel models
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
46
89
0
25 Feb 2021
Multiple Descent: Design Your Own Generalization Curve
Multiple Descent: Design Your Own Generalization Curve
Lin Chen
Yifei Min
M. Belkin
Amin Karbasi
DRL
18
61
0
03 Aug 2020
1