Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2010.00054
Cited By
v1
v2 (latest)
Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration
30 September 2020
Dimitrios Bachtis
Gert Aarts
B. Lucini
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration"
7 / 7 papers shown
Title
A simple framework for contrastive learning phases of matter
Chinese Physics Letters (CPL), 2022
Xiaodong Han
Sheng-Song Xu
Zhen Feng
Rong-Qiang He
Zhong-Yi Lu
96
7
0
11 May 2022
Applications of Machine Learning to Lattice Quantum Field Theory
D. Boyda
Salvatore Cali
Sam Foreman
L. Funcke
D. Hackett
...
Gert Aarts
A. Alexandru
Xiao-Yong Jin
B. Lucini
P. Shanahan
AI4CE
196
24
0
10 Feb 2022
Feature extraction of machine learning and phase transition point of Ising model
S. Funai
130
3
0
22 Nov 2021
Quantum field theories, Markov random fields and machine learning
Dimitrios Bachtis
Gert Aarts
B. Lucini
AI4CE
110
8
0
21 Oct 2021
Quantitative analysis of phase transitions in two-dimensional XY models using persistent homology
Physical Review E (PRE), 2021
Nicholas Sale
Jeffrey Giansiracusa
B. Lucini
151
19
0
22 Sep 2021
Machine learning with quantum field theories
Dimitrios Bachtis
Gert Aarts
B. Lucini
AI4CE
87
2
0
16 Sep 2021
Quantum field-theoretic machine learning
Dimitrios Bachtis
Gert Aarts
B. Lucini
AI4CE
156
32
0
18 Feb 2021
1