Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.00399
Cited By
v1
v2 (latest)
Analyzing Koopman approaches to physics-informed machine learning for long-term sea-surface temperature forecasting
15 September 2020
Julian Rice
Wenwei Xu
Andrew August
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Analyzing Koopman approaches to physics-informed machine learning for long-term sea-surface temperature forecasting"
6 / 6 papers shown
Title
Deep Koopman operator framework for causal discovery in nonlinear dynamical systems
Juan Nathaniel
Carla Roesch
Jatan Buch
Derek DeSantis
Adam Rupe
Kara Lamb
Pierre Gentine
CML
62
1
0
20 May 2025
Koopman Invertible Autoencoder: Leveraging Forward and Backward Dynamics for Temporal Modeling
Kshitij Tayal
Arvind Renganathan
Rahul Ghosh
X. Jia
Vipin Kumar
SyDa
AI4CE
89
5
0
19 Sep 2023
QuACK: Accelerating Gradient-Based Quantum Optimization with Koopman Operator Learning
Di Luo
Jiayu Shen
Rumen Dangovski
Marin Soljacic
79
5
0
02 Nov 2022
Bounded nonlinear forecasts of partially observed geophysical systems with physics-constrained deep learning
Said Ouala
Steven L. Brunton
A. Pascual
Bertrand Chapron
F. Collard
L. Gaultier
Ronan Fablet
PINN
AI4TS
AI4CE
71
10
0
11 Feb 2022
CKNet: A Convolutional Neural Network Based on Koopman Operator for Modeling Latent Dynamics from Pixels
Yongqian Xiao
Xin Xu
Yifei Shi
53
9
0
19 Feb 2021
Forecasting Sequential Data using Consistent Koopman Autoencoders
Omri Azencot
N. Benjamin Erichson
Vanessa Lin
Michael W. Mahoney
AI4TS
AI4CE
206
152
0
04 Mar 2020
1