ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.00685
6
44

How to Motivate Your Dragon: Teaching Goal-Driven Agents to Speak and Act in Fantasy Worlds

1 October 2020
Prithviraj Ammanabrolu
Jack Urbanek
Margaret Li
Arthur Szlam
Tim Rocktaschel
Jason Weston
    LM&Ro
ArXivPDFHTML
Abstract

We seek to create agents that both act and communicate with other agents in pursuit of a goal. Towards this end, we extend LIGHT (Urbanek et al. 2019) -- a large-scale crowd-sourced fantasy text-game -- with a dataset of quests. These contain natural language motivations paired with in-game goals and human demonstrations; completing a quest might require dialogue or actions (or both). We introduce a reinforcement learning system that (1) incorporates large-scale language modeling-based and commonsense reasoning-based pre-training to imbue the agent with relevant priors; and (2) leverages a factorized action space of action commands and dialogue, balancing between the two. We conduct zero-shot evaluations using held-out human expert demonstrations, showing that our agents are able to act consistently and talk naturally with respect to their motivations.

View on arXiv
Comments on this paper