Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.01179
Cited By
The Surprising Power of Graph Neural Networks with Random Node Initialization
2 October 2020
Ralph Abboud
.Ismail .Ilkan Ceylan
Martin Grohe
Thomas Lukasiewicz
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Surprising Power of Graph Neural Networks with Random Node Initialization"
50 / 50 papers shown
Title
Repetition Makes Perfect: Recurrent Sum-GNNs Match Message Passing Limit
Eran Rosenbluth
Martin Grohe
19
0
0
01 May 2025
Towards Invariance to Node Identifiers in Graph Neural Networks
Maya Bechler-Speicher
Moshe Eliasof
Carola-Bibiane Schönlieb
Ran Gilad-Bachrach
Amir Globerson
56
1
0
20 Feb 2025
Towards Graph Foundation Models: A Study on the Generalization of Positional and Structural Encodings
Billy Joe Franks
Moshe Eliasof
Semih Cantürk
Guy Wolf
Carola-Bibiane Schönlieb
Sophie Fellenz
Marius Kloft
AI4CE
76
0
0
10 Dec 2024
Joint Estimation and Prediction of City-wide Delivery Demand: A Large Language Model Empowered Graph-based Learning Approach
Tong Nie
Junlin He
Yuewen Mei
Guoyang Qin
Guilong Li
Jian Sun
Wei Ma
32
3
0
30 Aug 2024
Scalable Graph Compressed Convolutions
Junshu Sun
Chen Yang
Shuhui Wang
Qingming Huang
GNN
43
0
0
26 Jul 2024
Revisiting Random Walks for Learning on Graphs
Jinwoo Kim
Olga Zaghen
Ayhan Suleymanzade
Youngmin Ryou
Seunghoon Hong
59
0
0
01 Jul 2024
Learning Domain-Independent Heuristics for Grounded and Lifted Planning
Dillon Z. Chen
Sylvie Thiébaux
Felipe W. Trevizan
AI4CE
29
15
0
18 Dec 2023
Random Entity Quantization for Parameter-Efficient Compositional Knowledge Graph Representation
Jiaang Li
Quan Wang
Yi Liu
L. Zhang
Zhendong Mao
27
0
0
24 Oct 2023
Graph-level Representation Learning with Joint-Embedding Predictive Architectures
Geri Skenderi
Hang Li
Jiliang Tang
Marco Cristani
AI4TS
GNN
54
3
0
27 Sep 2023
How Expressive are Graph Neural Networks in Recommendation?
Xuheng Cai
Lianghao Xia
Xubin Ren
Chao Huang
29
6
0
22 Aug 2023
The Expressive Power of Graph Neural Networks: A Survey
Bingxue Zhang
Changjun Fan
Shixuan Liu
Kuihua Huang
Xiang Zhao
Jin-Yu Huang
Zhong Liu
40
19
0
16 Aug 2023
Expectation-Complete Graph Representations with Homomorphisms
Pascal Welke
Maximilian Thiessen
Fabian Jogl
Thomas Gärtner
18
6
0
09 Jun 2023
Extending the Design Space of Graph Neural Networks by Rethinking Folklore Weisfeiler-Lehman
Jiarui Feng
Lecheng Kong
Hao Liu
Dacheng Tao
Fuhai Li
Muhan Zhang
Yixin Chen
44
10
0
05 Jun 2023
From Relational Pooling to Subgraph GNNs: A Universal Framework for More Expressive Graph Neural Networks
Cai Zhou
Xiyuan Wang
Muhan Zhang
28
14
0
08 May 2023
An Empirical Study of Realized GNN Expressiveness
Yanbo Wang
Muhan Zhang
39
10
0
16 Apr 2023
Graph Positional Encoding via Random Feature Propagation
Moshe Eliasof
Fabrizio Frasca
Beatrice Bevilacqua
Eran Treister
Gal Chechik
Haggai Maron
22
18
0
06 Mar 2023
Technical report: Graph Neural Networks go Grammatical
Jason Piquenot
Aldo Moscatelli
Maxime Bérar
Pierre Héroux
R. Raveaux
Jean-Yves Ramel
Sébastien Adam
25
1
0
02 Mar 2023
Equivariant Polynomials for Graph Neural Networks
Omri Puny
Derek Lim
B. Kiani
Haggai Maron
Y. Lipman
24
31
0
22 Feb 2023
A Theory of Link Prediction via Relational Weisfeiler-Leman on Knowledge Graphs
Xingyue Huang
Miguel Romero
.Ismail .Ilkan Ceylan
Pablo Barceló
32
24
0
04 Feb 2023
Graph Neural Networks can Recover the Hidden Features Solely from the Graph Structure
Ryoma Sato
31
5
0
26 Jan 2023
A Generalization of ViT/MLP-Mixer to Graphs
Xiaoxin He
Bryan Hooi
T. Laurent
Adam Perold
Yann LeCun
Xavier Bresson
36
88
0
27 Dec 2022
Beyond 1-WL with Local Ego-Network Encodings
Nurudin Alvarez-Gonzalez
Andreas Kaltenbrunner
Vicencc Gómez
33
5
0
27 Nov 2022
Exponentially Improving the Complexity of Simulating the Weisfeiler-Lehman Test with Graph Neural Networks
Anders Aamand
Justin Y. Chen
Piotr Indyk
Shyam Narayanan
R. Rubinfeld
Nicholas Schiefer
Sandeep Silwal
Tal Wagner
39
21
0
06 Nov 2022
Boosting the Cycle Counting Power of Graph Neural Networks with I
2
^2
2
-GNNs
Yinan Huang
Xingang Peng
Jianzhu Ma
Muhan Zhang
81
47
0
22 Oct 2022
Weisfeiler-Lehman goes Dynamic: An Analysis of the Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs
Silvia Beddar-Wiesing
Giuseppe Alessio D’Inverno
C. Graziani
Veronica Lachi
Alice Moallemy-Oureh
F. Scarselli
J. M. Thomas
31
9
0
08 Oct 2022
Provably expressive temporal graph networks
Amauri Souza
Diego Mesquita
Samuel Kaski
Vikas K. Garg
89
54
0
29 Sep 2022
One Model, Any CSP: Graph Neural Networks as Fast Global Search Heuristics for Constraint Satisfaction
Jan Tonshoff
Berke Kisin
Jakob Lindner
Martin Grohe
GNN
18
22
0
22 Aug 2022
Universally Expressive Communication in Multi-Agent Reinforcement Learning
Matthew Morris
Thomas D. Barrett
Arnu Pretorius
24
4
0
14 Jun 2022
Shortest Path Networks for Graph Property Prediction
Ralph Abboud
Radoslav Dimitrov
.Ismail .Ilkan Ceylan
GNN
27
44
0
02 Jun 2022
Theory of Graph Neural Networks: Representation and Learning
Stefanie Jegelka
GNN
AI4CE
33
68
0
16 Apr 2022
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
Christopher Morris
Gaurav Rattan
Sandra Kiefer
Siamak Ravanbakhsh
44
39
0
25 Mar 2022
Benchmarking Graphormer on Large-Scale Molecular Modeling Datasets
Yu Shi
Shuxin Zheng
Guolin Ke
Yifei Shen
Jiacheng You
Jiyan He
Shengjie Luo
Chang-Shu Liu
Di He
Tie-Yan Liu
AI4CE
35
65
0
09 Mar 2022
R-GCN: The R Could Stand for Random
Vic Degraeve
Gilles Vandewiele
F. Ongenae
Sofie Van Hoecke
GNN
21
13
0
04 Mar 2022
Equivariant and Stable Positional Encoding for More Powerful Graph Neural Networks
Hongya Wang
Haoteng Yin
Muhan Zhang
Pan Li
35
107
0
01 Mar 2022
A Theoretical Comparison of Graph Neural Network Extensions
Pál András Papp
Roger Wattenhofer
97
45
0
30 Jan 2022
Equivariant Quantum Graph Circuits
Péter Mernyei
K. Meichanetzidis
.Ismail .Ilkan Ceylan
36
8
0
10 Dec 2021
On the Unreasonable Effectiveness of Feature propagation in Learning on Graphs with Missing Node Features
Emanuele Rossi
Henry Kenlay
Maria I. Gorinova
B. Chamberlain
Xiaowen Dong
M. Bronstein
23
87
0
23 Nov 2021
DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks
Pál András Papp
Karolis Martinkus
Lukas Faber
Roger Wattenhofer
GNN
19
138
0
11 Nov 2021
From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness
Lingxiao Zhao
Wei Jin
L. Akoglu
Neil Shah
GNN
24
160
0
07 Oct 2021
Equivariant Subgraph Aggregation Networks
Beatrice Bevilacqua
Fabrizio Frasca
Derek Lim
Balasubramaniam Srinivasan
Chen Cai
G. Balamurugan
M. Bronstein
Haggai Maron
48
174
0
06 Oct 2021
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
127
78
0
01 Oct 2021
Learning General Optimal Policies with Graph Neural Networks: Expressive Power, Transparency, and Limits
Simon Ståhlberg
Blai Bonet
Hector Geffner
27
48
0
21 Sep 2021
Graph Neural Networks for Graph Drawing
Matteo Tiezzi
Gabriele Ciravegna
Marco Gori
21
20
0
21 Sep 2021
On Positional and Structural Node Features for Graph Neural Networks on Non-attributed Graphs
Hejie Cui
Zijie Lu
Pan Li
Carl Yang
15
80
0
03 Jul 2021
Graph Neural Networks with Local Graph Parameters
Pablo Barceló
Floris Geerts
Juan L. Reutter
Maksimilian Ryschkov
24
64
0
12 Jun 2021
Breaking the Limits of Message Passing Graph Neural Networks
M. Balcilar
Pierre Héroux
Benoit Gaüzère
Pascal Vasseur
Sébastien Adam
P. Honeine
13
121
0
08 Jun 2021
The Logic of Graph Neural Networks
Martin Grohe
AI4CE
18
87
0
29 Apr 2021
Combinatorial optimization and reasoning with graph neural networks
Quentin Cappart
Didier Chételat
Elias Boutros Khalil
Andrea Lodi
Christopher Morris
Petar Velickovic
AI4CE
32
346
0
18 Feb 2021
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
189
914
0
02 Mar 2020
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
203
885
0
07 Jun 2018
1