ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.01356
11
4

Expectigrad: Fast Stochastic Optimization with Robust Convergence Properties

3 October 2020
Brett Daley
Chris Amato
    ODL
ArXivPDFHTML
Abstract

Many popular adaptive gradient methods such as Adam and RMSProp rely on an exponential moving average (EMA) to normalize their stepsizes. While the EMA makes these methods highly responsive to new gradient information, recent research has shown that it also causes divergence on at least one convex optimization problem. We propose a novel method called Expectigrad, which adjusts stepsizes according to a per-component unweighted mean of all historical gradients and computes a bias-corrected momentum term jointly between the numerator and denominator. We prove that Expectigrad cannot diverge on every instance of the optimization problem known to cause Adam to diverge. We also establish a regret bound in the general stochastic nonconvex setting that suggests Expectigrad is less susceptible to gradient variance than existing methods are. Testing Expectigrad on several high-dimensional machine learning tasks, we find it often performs favorably to state-of-the-art methods with little hyperparameter tuning.

View on arXiv
Comments on this paper