Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.01374
Cited By
Exponential Lower Bounds for Planning in MDPs With Linearly-Realizable Optimal Action-Value Functions
3 October 2020
Gellert Weisz
Philip Amortila
Csaba Szepesvári
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exponential Lower Bounds for Planning in MDPs With Linearly-Realizable Optimal Action-Value Functions"
31 / 31 papers shown
Title
The Central Role of the Loss Function in Reinforcement Learning
Kaiwen Wang
Nathan Kallus
Wen Sun
OffRL
64
7
0
19 Sep 2024
Horizon-Free Regret for Linear Markov Decision Processes
Zihan Zhang
Jason D. Lee
Yuxin Chen
Simon S. Du
33
3
0
15 Mar 2024
When is Agnostic Reinforcement Learning Statistically Tractable?
Zeyu Jia
Gene Li
Alexander Rakhlin
Ayush Sekhari
Nathan Srebro
OffRL
34
5
0
09 Oct 2023
The Optimal Approximation Factors in Misspecified Off-Policy Value Function Estimation
Philip Amortila
Nan Jiang
Csaba Szepesvári
OffRL
31
3
0
25 Jul 2023
Exponential Hardness of Reinforcement Learning with Linear Function Approximation
Daniel M. Kane
Sihan Liu
Shachar Lovett
G. Mahajan
Csaba Szepesvári
Gellert Weisz
46
3
0
25 Feb 2023
Efficient Planning in Combinatorial Action Spaces with Applications to Cooperative Multi-Agent Reinforcement Learning
Volodymyr Tkachuk
Seyed Alireza Bakhtiari
Johannes Kirschner
Matej Jusup
Ilija Bogunovic
Csaba Szepesvári
32
5
0
08 Feb 2023
Linear Reinforcement Learning with Ball Structure Action Space
Zeyu Jia
Randy Jia
Dhruv Madeka
Dean Phillips Foster
31
1
0
14 Nov 2022
When is Realizability Sufficient for Off-Policy Reinforcement Learning?
Andrea Zanette
OffRL
24
14
0
10 Nov 2022
A Self-Play Posterior Sampling Algorithm for Zero-Sum Markov Games
Wei Xiong
Han Zhong
Chengshuai Shi
Cong Shen
Tong Zhang
66
18
0
04 Oct 2022
Minimax-Optimal Multi-Agent RL in Markov Games With a Generative Model
Gen Li
Yuejie Chi
Yuting Wei
Yuxin Chen
37
18
0
22 Aug 2022
A Few Expert Queries Suffices for Sample-Efficient RL with Resets and Linear Value Approximation
Philip Amortila
Nan Jiang
Dhruv Madeka
Dean Phillips Foster
29
5
0
18 Jul 2022
On the Statistical Efficiency of Reward-Free Exploration in Non-Linear RL
Jinglin Chen
Aditya Modi
A. Krishnamurthy
Nan Jiang
Alekh Agarwal
38
25
0
21 Jun 2022
Sample-Efficient Reinforcement Learning in the Presence of Exogenous Information
Yonathan Efroni
Dylan J. Foster
Dipendra Kumar Misra
A. Krishnamurthy
John Langford
OffRL
31
25
0
09 Jun 2022
Stabilizing Q-learning with Linear Architectures for Provably Efficient Learning
Andrea Zanette
Martin J. Wainwright
OOD
45
5
0
01 Jun 2022
A Complete Characterization of Linear Estimators for Offline Policy Evaluation
Juan C. Perdomo
A. Krishnamurthy
Peter L. Bartlett
Sham Kakade
OffRL
29
3
0
08 Mar 2022
Retrieval-Augmented Reinforcement Learning
Anirudh Goyal
A. Friesen
Andrea Banino
T. Weber
Nan Rosemary Ke
...
Michal Valko
Simon Osindero
Timothy Lillicrap
N. Heess
Charles Blundell
OffRL
32
53
0
17 Feb 2022
Offline Reinforcement Learning: Fundamental Barriers for Value Function Approximation
Dylan J. Foster
A. Krishnamurthy
D. Simchi-Levi
Yunzong Xu
OffRL
21
62
0
21 Nov 2021
Reinforcement Learning in Linear MDPs: Constant Regret and Representation Selection
Matteo Papini
Andrea Tirinzoni
Aldo Pacchiano
Marcello Restelli
A. Lazaric
Matteo Pirotta
19
18
0
27 Oct 2021
Representation Learning for Online and Offline RL in Low-rank MDPs
Masatoshi Uehara
Xuezhou Zhang
Wen Sun
OffRL
67
127
0
09 Oct 2021
Provable Benefits of Actor-Critic Methods for Offline Reinforcement Learning
Andrea Zanette
Martin J. Wainwright
Emma Brunskill
OffRL
34
115
0
19 Aug 2021
Efficient Local Planning with Linear Function Approximation
Dong Yin
Botao Hao
Yasin Abbasi-Yadkori
N. Lazić
Csaba Szepesvári
32
19
0
12 Aug 2021
Bellman-consistent Pessimism for Offline Reinforcement Learning
Tengyang Xie
Ching-An Cheng
Nan Jiang
Paul Mineiro
Alekh Agarwal
OffRL
LRM
27
271
0
13 Jun 2021
The Power of Exploiter: Provable Multi-Agent RL in Large State Spaces
Chi Jin
Qinghua Liu
Tiancheng Yu
26
50
0
07 Jun 2021
Sample-Efficient Reinforcement Learning Is Feasible for Linearly Realizable MDPs with Limited Revisiting
Gen Li
Yuxin Chen
Yuejie Chi
Yuantao Gu
Yuting Wei
OffRL
26
28
0
17 May 2021
Cautiously Optimistic Policy Optimization and Exploration with Linear Function Approximation
Andrea Zanette
Ching-An Cheng
Alekh Agarwal
32
53
0
24 Mar 2021
An Exponential Lower Bound for Linearly-Realizable MDPs with Constant Suboptimality Gap
Yuanhao Wang
Ruosong Wang
Sham Kakade
OffRL
39
43
0
23 Mar 2021
Bellman Eluder Dimension: New Rich Classes of RL Problems, and Sample-Efficient Algorithms
Chi Jin
Qinghua Liu
Sobhan Miryoosefi
OffRL
38
215
0
01 Feb 2021
Fast Rates for the Regret of Offline Reinforcement Learning
Yichun Hu
Nathan Kallus
Masatoshi Uehara
OffRL
24
30
0
31 Jan 2021
Improved Variance-Aware Confidence Sets for Linear Bandits and Linear Mixture MDP
Zihan Zhang
Jiaqi Yang
Xiangyang Ji
S. Du
71
38
0
29 Jan 2021
Exponential Lower Bounds for Batch Reinforcement Learning: Batch RL can be Exponentially Harder than Online RL
Andrea Zanette
OffRL
26
71
0
14 Dec 2020
Global Optimality Guarantees For Policy Gradient Methods
Jalaj Bhandari
Daniel Russo
39
186
0
05 Jun 2019
1