ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.02347
  4. Cited By
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach

Learning with Instance-Dependent Label Noise: A Sample Sieve Approach

5 October 2020
Hao Cheng
Zhaowei Zhu
Xingyu Li
Yifei Gong
Xing Sun
Yang Liu
    NoLa
ArXivPDFHTML

Papers citing "Learning with Instance-Dependent Label Noise: A Sample Sieve Approach"

34 / 34 papers shown
Title
Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data
Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data
Weiran Pan
Wei Wei
Feida Zhu
Yong Deng
NoLa
139
0
0
24 Apr 2025
Early Stopping Against Label Noise Without Validation Data
Early Stopping Against Label Noise Without Validation Data
Suqin Yuan
Lei Feng
Tongliang Liu
NoLa
96
14
0
11 Feb 2025
Effective and Robust Adversarial Training against Data and Label
  Corruptions
Effective and Robust Adversarial Training against Data and Label Corruptions
Pengfei Zhang
Zi Huang
Xin-Shun Xu
Guangdong Bai
43
4
0
07 May 2024
Learning with Noisy Labels: Interconnection of Two
  Expectation-Maximizations
Learning with Noisy Labels: Interconnection of Two Expectation-Maximizations
Heewon Kim
Hyun Sung Chang
Kiho Cho
Jaeyun Lee
Bohyung Han
NoLa
21
2
0
09 Jan 2024
Mitigating the Impact of False Negatives in Dense Retrieval with
  Contrastive Confidence Regularization
Mitigating the Impact of False Negatives in Dense Retrieval with Contrastive Confidence Regularization
Shiqi Wang
Yeqin Zhang
Cam-Tu Nguyen
20
2
0
30 Dec 2023
Towards Reliable Dermatology Evaluation Benchmarks
Towards Reliable Dermatology Evaluation Benchmarks
Fabian Gröger
Simone Lionetti
Philippe Gottfrois
Alvaro Gonzalez-Jimenez
Matthew Groh
Roxana Daneshjou
Labelling Consortium
A. Navarini
M. Pouly
19
5
0
13 Sep 2023
MILD: Modeling the Instance Learning Dynamics for Learning with Noisy
  Labels
MILD: Modeling the Instance Learning Dynamics for Learning with Noisy Labels
Chuanyan Hu
Shipeng Yan
Zhitong Gao
Xuming He
NoLa
19
4
0
20 Jun 2023
Instance-dependent Noisy-label Learning with Graphical Model Based
  Noise-rate Estimation
Instance-dependent Noisy-label Learning with Graphical Model Based Noise-rate Estimation
Arpit Garg
Cuong C. Nguyen
Rafael Felix
Thanh-Toan Do
G. Carneiro
NoLa
28
1
0
31 May 2023
Mitigating Label Noise through Data Ambiguation
Mitigating Label Noise through Data Ambiguation
Julian Lienen
Eyke Hüllermeier
NoLa
32
6
0
23 May 2023
Imprecise Label Learning: A Unified Framework for Learning with Various
  Imprecise Label Configurations
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations
Hao Chen
Ankit Shah
Jindong Wang
R. Tao
Yidong Wang
Xingxu Xie
Masashi Sugiyama
Rita Singh
Bhiksha Raj
29
12
0
22 May 2023
Fairness Improves Learning from Noisily Labeled Long-Tailed Data
Fairness Improves Learning from Noisily Labeled Long-Tailed Data
Jiaheng Wei
Zhaowei Zhu
Gang Niu
Tongliang Liu
Sijia Liu
Masashi Sugiyama
Yang Liu
28
6
0
22 Mar 2023
When Source-Free Domain Adaptation Meets Learning with Noisy Labels
When Source-Free Domain Adaptation Meets Learning with Noisy Labels
L. Yi
Gezheng Xu
Pengcheng Xu
Jiaqi Li
Ruizhi Pu
Charles X. Ling
A. McLeod
Boyu Wang
21
39
0
31 Jan 2023
Improve Noise Tolerance of Robust Loss via Noise-Awareness
Improve Noise Tolerance of Robust Loss via Noise-Awareness
Kehui Ding
Jun Shu
Deyu Meng
Zongben Xu
NoLa
19
5
0
18 Jan 2023
Neighbour Consistency Guided Pseudo-Label Refinement for Unsupervised
  Person Re-Identification
Neighbour Consistency Guided Pseudo-Label Refinement for Unsupervised Person Re-Identification
De-Chun Cheng
Haichun Tai
N. Wang
Zhen Wang
Xinbo Gao
27
3
0
30 Nov 2022
SplitNet: Learnable Clean-Noisy Label Splitting for Learning with Noisy
  Labels
SplitNet: Learnable Clean-Noisy Label Splitting for Learning with Noisy Labels
Daehwan Kim
Kwang-seok Ryoo
Hansang Cho
Seung Wook Kim
NoLa
24
3
0
20 Nov 2022
Tackling Instance-Dependent Label Noise with Dynamic Distribution
  Calibration
Tackling Instance-Dependent Label Noise with Dynamic Distribution Calibration
Manyi Zhang
Yuxin Ren
Zihao W. Wang
C. Yuan
21
3
0
11 Oct 2022
Centrality and Consistency: Two-Stage Clean Samples Identification for
  Learning with Instance-Dependent Noisy Labels
Centrality and Consistency: Two-Stage Clean Samples Identification for Learning with Instance-Dependent Noisy Labels
Ganlong Zhao
Guanbin Li
Yipeng Qin
Feng Liu
Yizhou Yu
NoLa
22
22
0
29 Jul 2022
ProSelfLC: Progressive Self Label Correction Towards A Low-Temperature
  Entropy State
ProSelfLC: Progressive Self Label Correction Towards A Low-Temperature Entropy State
Xinshao Wang
Yang Hua
Elyor Kodirov
S. Mukherjee
David A. Clifton
N. Robertson
15
6
0
30 Jun 2022
Training Subset Selection for Weak Supervision
Training Subset Selection for Weak Supervision
Hunter Lang
Aravindan Vijayaraghavan
David Sontag
NoLa
8
21
0
06 Jun 2022
Instance-Dependent Label-Noise Learning with Manifold-Regularized
  Transition Matrix Estimation
Instance-Dependent Label-Noise Learning with Manifold-Regularized Transition Matrix Estimation
De-Chun Cheng
Tongliang Liu
Yixiong Ning
Nannan Wang
Bo Han
Gang Niu
Xinbo Gao
Masashi Sugiyama
NoLa
37
65
0
06 Jun 2022
Selective-Supervised Contrastive Learning with Noisy Labels
Selective-Supervised Contrastive Learning with Noisy Labels
Shikun Li
Xiaobo Xia
Shiming Ge
Tongliang Liu
NoLa
19
172
0
08 Mar 2022
Dropout can Simulate Exponential Number of Models for Sample Selection
  Techniques
Dropout can Simulate Exponential Number of Models for Sample Selection Techniques
RD Samsung
29
0
0
26 Feb 2022
Beyond Images: Label Noise Transition Matrix Estimation for Tasks with
  Lower-Quality Features
Beyond Images: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features
Zhaowei Zhu
Jialu Wang
Yang Liu
NoLa
26
37
0
02 Feb 2022
Feature Diversity Learning with Sample Dropout for Unsupervised Domain
  Adaptive Person Re-identification
Feature Diversity Learning with Sample Dropout for Unsupervised Domain Adaptive Person Re-identification
Chunren Tang
Dingyu Xue
Dongyue Chen
30
2
0
25 Jan 2022
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern
  Estimation
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation
Jeongeun Park
Seungyoung Shin
Sangheum Hwang
Sungjoon Choi
15
5
0
02 Nov 2021
Mitigating Memorization of Noisy Labels via Regularization between
  Representations
Mitigating Memorization of Noisy Labels via Regularization between Representations
Hao Cheng
Zhaowei Zhu
Xing Sun
Yang Liu
NoLa
33
28
0
18 Oct 2021
Adaptive Early-Learning Correction for Segmentation from Noisy
  Annotations
Adaptive Early-Learning Correction for Segmentation from Noisy Annotations
Sheng Liu
Kangning Liu
Weicheng Zhu
Yiqiu Shen
C. Fernandez‐Granda
NoLa
26
104
0
07 Oct 2021
To Smooth or Not? When Label Smoothing Meets Noisy Labels
To Smooth or Not? When Label Smoothing Meets Noisy Labels
Jiaheng Wei
Hangyu Liu
Tongliang Liu
Gang Niu
Masashi Sugiyama
Yang Liu
NoLa
32
69
0
08 Jun 2021
Learning from Noisy Labels via Dynamic Loss Thresholding
Learning from Noisy Labels via Dynamic Loss Thresholding
Hao Yang
Youzhi Jin
Zi-Hua Li
Deng-Bao Wang
Lei Miao
Xin Geng
Min-Ling Zhang
NoLa
AI4CE
24
6
0
01 Apr 2021
Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for
  Unsupervised Person Re-Identification
Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification
Fengxiang Yang
Zhun Zhong
Zhiming Luo
Yuanzheng Cai
Yaojin Lin
Shaozi Li
N. Sebe
NoLa
14
111
0
08 Mar 2021
Clusterability as an Alternative to Anchor Points When Learning with
  Noisy Labels
Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels
Zhaowei Zhu
Yiwen Song
Yang Liu
NoLa
13
91
0
10 Feb 2021
When Optimizing $f$-divergence is Robust with Label Noise
When Optimizing fff-divergence is Robust with Label Noise
Jiaheng Wei
Yang Liu
24
54
0
07 Nov 2020
Combating noisy labels by agreement: A joint training method with
  co-regularization
Combating noisy labels by agreement: A joint training method with co-regularization
Hongxin Wei
Lei Feng
Xiangyu Chen
Bo An
NoLa
310
497
0
05 Mar 2020
Confidence Scores Make Instance-dependent Label-noise Learning Possible
Confidence Scores Make Instance-dependent Label-noise Learning Possible
Antonin Berthon
Bo Han
Gang Niu
Tongliang Liu
Masashi Sugiyama
NoLa
21
104
0
11 Jan 2020
1