Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.02347
Cited By
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
5 October 2020
Hao Cheng
Zhaowei Zhu
Xingyu Li
Yifei Gong
Xing Sun
Yang Liu
NoLa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning with Instance-Dependent Label Noise: A Sample Sieve Approach"
34 / 34 papers shown
Title
Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data
Weiran Pan
Wei Wei
Feida Zhu
Yong Deng
NoLa
139
0
0
24 Apr 2025
Early Stopping Against Label Noise Without Validation Data
Suqin Yuan
Lei Feng
Tongliang Liu
NoLa
96
14
0
11 Feb 2025
Effective and Robust Adversarial Training against Data and Label Corruptions
Pengfei Zhang
Zi Huang
Xin-Shun Xu
Guangdong Bai
43
4
0
07 May 2024
Learning with Noisy Labels: Interconnection of Two Expectation-Maximizations
Heewon Kim
Hyun Sung Chang
Kiho Cho
Jaeyun Lee
Bohyung Han
NoLa
21
2
0
09 Jan 2024
Mitigating the Impact of False Negatives in Dense Retrieval with Contrastive Confidence Regularization
Shiqi Wang
Yeqin Zhang
Cam-Tu Nguyen
20
2
0
30 Dec 2023
Towards Reliable Dermatology Evaluation Benchmarks
Fabian Gröger
Simone Lionetti
Philippe Gottfrois
Alvaro Gonzalez-Jimenez
Matthew Groh
Roxana Daneshjou
Labelling Consortium
A. Navarini
M. Pouly
19
5
0
13 Sep 2023
MILD: Modeling the Instance Learning Dynamics for Learning with Noisy Labels
Chuanyan Hu
Shipeng Yan
Zhitong Gao
Xuming He
NoLa
19
4
0
20 Jun 2023
Instance-dependent Noisy-label Learning with Graphical Model Based Noise-rate Estimation
Arpit Garg
Cuong C. Nguyen
Rafael Felix
Thanh-Toan Do
G. Carneiro
NoLa
28
1
0
31 May 2023
Mitigating Label Noise through Data Ambiguation
Julian Lienen
Eyke Hüllermeier
NoLa
32
6
0
23 May 2023
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations
Hao Chen
Ankit Shah
Jindong Wang
R. Tao
Yidong Wang
Xingxu Xie
Masashi Sugiyama
Rita Singh
Bhiksha Raj
29
12
0
22 May 2023
Fairness Improves Learning from Noisily Labeled Long-Tailed Data
Jiaheng Wei
Zhaowei Zhu
Gang Niu
Tongliang Liu
Sijia Liu
Masashi Sugiyama
Yang Liu
28
6
0
22 Mar 2023
When Source-Free Domain Adaptation Meets Learning with Noisy Labels
L. Yi
Gezheng Xu
Pengcheng Xu
Jiaqi Li
Ruizhi Pu
Charles X. Ling
A. McLeod
Boyu Wang
21
39
0
31 Jan 2023
Improve Noise Tolerance of Robust Loss via Noise-Awareness
Kehui Ding
Jun Shu
Deyu Meng
Zongben Xu
NoLa
19
5
0
18 Jan 2023
Neighbour Consistency Guided Pseudo-Label Refinement for Unsupervised Person Re-Identification
De-Chun Cheng
Haichun Tai
N. Wang
Zhen Wang
Xinbo Gao
27
3
0
30 Nov 2022
SplitNet: Learnable Clean-Noisy Label Splitting for Learning with Noisy Labels
Daehwan Kim
Kwang-seok Ryoo
Hansang Cho
Seung Wook Kim
NoLa
24
3
0
20 Nov 2022
Tackling Instance-Dependent Label Noise with Dynamic Distribution Calibration
Manyi Zhang
Yuxin Ren
Zihao W. Wang
C. Yuan
21
3
0
11 Oct 2022
Centrality and Consistency: Two-Stage Clean Samples Identification for Learning with Instance-Dependent Noisy Labels
Ganlong Zhao
Guanbin Li
Yipeng Qin
Feng Liu
Yizhou Yu
NoLa
22
22
0
29 Jul 2022
ProSelfLC: Progressive Self Label Correction Towards A Low-Temperature Entropy State
Xinshao Wang
Yang Hua
Elyor Kodirov
S. Mukherjee
David A. Clifton
N. Robertson
15
6
0
30 Jun 2022
Training Subset Selection for Weak Supervision
Hunter Lang
Aravindan Vijayaraghavan
David Sontag
NoLa
8
21
0
06 Jun 2022
Instance-Dependent Label-Noise Learning with Manifold-Regularized Transition Matrix Estimation
De-Chun Cheng
Tongliang Liu
Yixiong Ning
Nannan Wang
Bo Han
Gang Niu
Xinbo Gao
Masashi Sugiyama
NoLa
37
65
0
06 Jun 2022
Selective-Supervised Contrastive Learning with Noisy Labels
Shikun Li
Xiaobo Xia
Shiming Ge
Tongliang Liu
NoLa
19
172
0
08 Mar 2022
Dropout can Simulate Exponential Number of Models for Sample Selection Techniques
RD Samsung
29
0
0
26 Feb 2022
Beyond Images: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features
Zhaowei Zhu
Jialu Wang
Yang Liu
NoLa
26
37
0
02 Feb 2022
Feature Diversity Learning with Sample Dropout for Unsupervised Domain Adaptive Person Re-identification
Chunren Tang
Dingyu Xue
Dongyue Chen
30
2
0
25 Jan 2022
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation
Jeongeun Park
Seungyoung Shin
Sangheum Hwang
Sungjoon Choi
15
5
0
02 Nov 2021
Mitigating Memorization of Noisy Labels via Regularization between Representations
Hao Cheng
Zhaowei Zhu
Xing Sun
Yang Liu
NoLa
33
28
0
18 Oct 2021
Adaptive Early-Learning Correction for Segmentation from Noisy Annotations
Sheng Liu
Kangning Liu
Weicheng Zhu
Yiqiu Shen
C. Fernandez‐Granda
NoLa
26
104
0
07 Oct 2021
To Smooth or Not? When Label Smoothing Meets Noisy Labels
Jiaheng Wei
Hangyu Liu
Tongliang Liu
Gang Niu
Masashi Sugiyama
Yang Liu
NoLa
32
69
0
08 Jun 2021
Learning from Noisy Labels via Dynamic Loss Thresholding
Hao Yang
Youzhi Jin
Zi-Hua Li
Deng-Bao Wang
Lei Miao
Xin Geng
Min-Ling Zhang
NoLa
AI4CE
24
6
0
01 Apr 2021
Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification
Fengxiang Yang
Zhun Zhong
Zhiming Luo
Yuanzheng Cai
Yaojin Lin
Shaozi Li
N. Sebe
NoLa
14
111
0
08 Mar 2021
Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels
Zhaowei Zhu
Yiwen Song
Yang Liu
NoLa
13
91
0
10 Feb 2021
When Optimizing
f
f
f
-divergence is Robust with Label Noise
Jiaheng Wei
Yang Liu
24
54
0
07 Nov 2020
Combating noisy labels by agreement: A joint training method with co-regularization
Hongxin Wei
Lei Feng
Xiangyu Chen
Bo An
NoLa
310
497
0
05 Mar 2020
Confidence Scores Make Instance-dependent Label-noise Learning Possible
Antonin Berthon
Bo Han
Gang Niu
Tongliang Liu
Masashi Sugiyama
NoLa
21
104
0
11 Jan 2020
1